Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,s...Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.展开更多
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta...Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.展开更多
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the resul...Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
Most of the important units of pressure equipment have been manufactured successfully in China related to the national key construction projects,such as 10 million tons/year oil refinery,million tons/year ethylene,lar...Most of the important units of pressure equipment have been manufactured successfully in China related to the national key construction projects,such as 10 million tons/year oil refinery,million tons/year ethylene,large coal chemical,etc.However,some of them failed to operate shortly after their putting into service.Some suffered severe damage even during the previous period of manufacture and installation.In this paper,cases of accident survey and failure analysis are given for some typical pressure vessels.It is found that many accidents are related to insufficient consideration of the design and manufacture of the equipment.These accidents occur fundamentally because of the Chinese design standards codes for pressure equipment without risk or life concepts and the support from a database for potential risk existing in their dynamic service.Most designers and manufacturers are unable to make correct design,materials selection and manufacturing process all due to a lack of engineering experience.In order to avoid the repetition of the accidents and improve the safety,reliability and economy of pressure equipment,a platform is suggested for design,manufacture and maintenance of pressure equipment in China based on accidents survey.In other words,some effective precautionary measures are taken at the design and manufacture stage,and the design methodology has to be based on service life requirement and desirable risk level.At the service stage some reasonable inspection/monitoring approaches should be utilized to control risks and ensure the equipment operating safely until its desired lifespan.Finally,the basic scheme and some key technologies are briefly given for the platform construction.The concept of risk and life based design,manufacture and maintenance proposed herein has important significance for improving and perfecting the codes and standards for design,manufacture and maintenance of Chinese pressure-bearing equipment,enhancing the life and reliability of Chinese pressure-bearing equipment and promoting the development of in-service maintenance technology that combines safety and economy.展开更多
Multifunctional structures(MFSs)integrate diverse functions to achieve superior properties.However,conventional design and manufacturing methods—which generally lack quality control and largely depend on complex equi...Multifunctional structures(MFSs)integrate diverse functions to achieve superior properties.However,conventional design and manufacturing methods—which generally lack quality control and largely depend on complex equipment with multiple stations to achieve the integration of distinct materials and devices—are unable to satisfy the requirements of MFS applications in emerging industries such as aerospace engineering.Motivated by the concept of design for manufacturing,we adopt a layer regulation method with an established optimization model to design typical MFSs with load-bearing,electric,heat-conduction,and radiation-shielding functions.A high-temperature in situ additive manufacturing(AM)technology is developed to print various metallic wires or carbon fiber-reinforced high-meltingpoint polyetheretherketone(PEEK)composites.It is found that the MFS,despite its low mass,exceeds the stiffness of the PEEK substrate by 21.5%.The embedded electrics remain functional after the elastic deformation stage.Compared with those of the PEEK substrate,the equivalent thermal conductivity of the MFS beneath the central heat source area is enhanced by 568.0%,and the radiation shielding is improved by 27.9%.Moreover,a satellite prototype with diverse MFSs is rapidly constructed as an illustration.This work provides a systematic approach for high-performance design and advanced manufacturing,which exhibits considerable prospects for both the function expansion and performance enhancement of industrial equipment.展开更多
Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety c...Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.展开更多
With the development of the times, undergraduate colleges and universities begin to transform and develop to adapt to the changing society, and put forward new requirements for practical teaching strategies, especiall...With the development of the times, undergraduate colleges and universities begin to transform and develop to adapt to the changing society, and put forward new requirements for practical teaching strategies, especially for applied undergraduate colleges. The reform of practical teaching is particularly important. Under the development of education transformation, the reform of mechanical design and manufacture and the practice teaching of automation specialty also occupy a very important position. Through the understanding of the reform of the practical teaching of this specialty, the effect of the reform is observed, and a reasonable teaching scheme is put forward to promote the steps of the transformation of the practical teaching.展开更多
Shanghai, China. August 29, 2008-Cutting edge fashion and design, advanced textile technology and innovative industry partnerships were brought together in Shanghai at the launch of XLA? Denim Fashion Show to introduc...Shanghai, China. August 29, 2008-Cutting edge fashion and design, advanced textile technology and innovative industry partnerships were brought together in Shanghai at the launch of XLA? Denim Fashion Show to introduce the next-generation XLA<sup>TM</sup> stretch fiber for denim application.展开更多
Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and ...Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,展开更多
Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided ...Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].展开更多
Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing s...Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.展开更多
The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures...The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.展开更多
Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys ...Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys.展开更多
In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expresse...In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.展开更多
Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) kn...Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.展开更多
Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While...Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.展开更多
Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key techno...Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.展开更多
A novel α+β titanium alloy with multi-alloying addition was designed based on the cluster formula 12[Al-Ti_(12)](AlTi_(2))+5[Al-Ti_(14)](AlV_(1.2)Mo_(0.6)Nb_(0.2))which was derived from Ti-6Al-4V.The nominal composi...A novel α+β titanium alloy with multi-alloying addition was designed based on the cluster formula 12[Al-Ti_(12)](AlTi_(2))+5[Al-Ti_(14)](AlV_(1.2)Mo_(0.6)Nb_(0.2))which was derived from Ti-6Al-4V.The nominal composition of this novel alloy was determined as Ti-6.83Al-2.28V-2.14Mo-0.69Nb-6.79Zr.In this study,the novel alloy and Ti-6Al-4V alloy samples were prepared by laser additive manufacturing.The microstructure,micro-hardness,room/high temperature tensile properties of the as-deposited samples were investigated.Compared to Ti-6Al-4V,the novel alloy has much higher room and high temperature(600℃)tensile strengths,which are 1,427.5 MPa and 642.2 MPa,respectively;however,it has a much lower elongation(3.2%)at room temperature because of the finer microstructure.To improve the elongation of the novel alloy,heat treatment was used.After solution at 960℃ or 970℃ for 1 h followed by air cooling and aging at 550℃ for 4 h followed by air cooling,a unique bi-modal microstructure which contains crab-like primaryαand residual β phase is obtained,improving the compression elongation by 80.9% compared to the as-deposited samples.The novel alloy can be used as a high-temperature and high-strength candidate for laser additive manufacturing.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82272504 and 82072456)the National Key R&D Program of China(No.2018YFB1105100)+4 种基金the Department of Science and Technology of Jilin Province,China(Nos.20200404202YY,20200403086SF,20210101321JC,20210204104YY,20200201453JC,20220204119YY,202201ZYTS131,202201ZYTS129,20220401084YY,202201ZYTS505,and YDZJ202301ZYTS076)the Department of Finance of Jilin Province,China(No.2020SCZT037)the Jilin Provincial Development and Reform Commission,China(Nos.2018C010 and 2022C043-5)the Interdisciplinary Integration and Cultivation Project of Jilin University(No.JLUXKJC2020307)the Central University Basic Scientific Research Fund(No.2023-JCXK-04).
文摘Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172164,52250363)the National Key R&D Program of China(Grant Nos.2021YFB3801800,2018YFA0306200)。
文摘Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.
基金This work is supported by the National Natural Science Foundation of China(No.11902232).
文摘Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
基金supported by Sino-France National International Cooperation Program(Grant No.2006DFB73000)National High-tech Research and Development Program of China(863 Program, Grant No.2007AAO4Z430,Grant No.2009AA044802)
文摘Most of the important units of pressure equipment have been manufactured successfully in China related to the national key construction projects,such as 10 million tons/year oil refinery,million tons/year ethylene,large coal chemical,etc.However,some of them failed to operate shortly after their putting into service.Some suffered severe damage even during the previous period of manufacture and installation.In this paper,cases of accident survey and failure analysis are given for some typical pressure vessels.It is found that many accidents are related to insufficient consideration of the design and manufacture of the equipment.These accidents occur fundamentally because of the Chinese design standards codes for pressure equipment without risk or life concepts and the support from a database for potential risk existing in their dynamic service.Most designers and manufacturers are unable to make correct design,materials selection and manufacturing process all due to a lack of engineering experience.In order to avoid the repetition of the accidents and improve the safety,reliability and economy of pressure equipment,a platform is suggested for design,manufacture and maintenance of pressure equipment in China based on accidents survey.In other words,some effective precautionary measures are taken at the design and manufacture stage,and the design methodology has to be based on service life requirement and desirable risk level.At the service stage some reasonable inspection/monitoring approaches should be utilized to control risks and ensure the equipment operating safely until its desired lifespan.Finally,the basic scheme and some key technologies are briefly given for the platform construction.The concept of risk and life based design,manufacture and maintenance proposed herein has important significance for improving and perfecting the codes and standards for design,manufacture and maintenance of Chinese pressure-bearing equipment,enhancing the life and reliability of Chinese pressure-bearing equipment and promoting the development of in-service maintenance technology that combines safety and economy.
基金supported by the National Natural Science Foundation of China(51822503,U20A20297,and 51975142)Key-Area Research and Development Program of Guangdong Province,China(2020B090923003)。
文摘Multifunctional structures(MFSs)integrate diverse functions to achieve superior properties.However,conventional design and manufacturing methods—which generally lack quality control and largely depend on complex equipment with multiple stations to achieve the integration of distinct materials and devices—are unable to satisfy the requirements of MFS applications in emerging industries such as aerospace engineering.Motivated by the concept of design for manufacturing,we adopt a layer regulation method with an established optimization model to design typical MFSs with load-bearing,electric,heat-conduction,and radiation-shielding functions.A high-temperature in situ additive manufacturing(AM)technology is developed to print various metallic wires or carbon fiber-reinforced high-meltingpoint polyetheretherketone(PEEK)composites.It is found that the MFS,despite its low mass,exceeds the stiffness of the PEEK substrate by 21.5%.The embedded electrics remain functional after the elastic deformation stage.Compared with those of the PEEK substrate,the equivalent thermal conductivity of the MFS beneath the central heat source area is enhanced by 568.0%,and the radiation shielding is improved by 27.9%.Moreover,a satellite prototype with diverse MFSs is rapidly constructed as an illustration.This work provides a systematic approach for high-performance design and advanced manufacturing,which exhibits considerable prospects for both the function expansion and performance enhancement of industrial equipment.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02)
文摘Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.
文摘With the development of the times, undergraduate colleges and universities begin to transform and develop to adapt to the changing society, and put forward new requirements for practical teaching strategies, especially for applied undergraduate colleges. The reform of practical teaching is particularly important. Under the development of education transformation, the reform of mechanical design and manufacture and the practice teaching of automation specialty also occupy a very important position. Through the understanding of the reform of the practical teaching of this specialty, the effect of the reform is observed, and a reasonable teaching scheme is put forward to promote the steps of the transformation of the practical teaching.
文摘Shanghai, China. August 29, 2008-Cutting edge fashion and design, advanced textile technology and innovative industry partnerships were brought together in Shanghai at the launch of XLA? Denim Fashion Show to introduce the next-generation XLA<sup>TM</sup> stretch fiber for denim application.
文摘Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,
文摘Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].
基金supported by National Natural Science Foundation of China(Grant No. 60975058)
文摘Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.
文摘The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.
基金the National Key Research and Development Program of China(No.2016YFB1100103)。
文摘Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys.
基金the National Key Research and Development Program of China(No.2016YFB1100103)the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(No.2020JJ25CY004)。
文摘In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.
基金Supported by National Science and Technology Council(CONACYT)of Mexico(Grant No.CB-2010-01-154430)PROMEP Program of the Public Education Secretariat(SEP)of MexicoFund for Research Support(FAI)of UASLP
文摘Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001)project supported by the Space Utilization System of China Manned Space Engineering(KJZ-YY-WCL03)+6 种基金National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902210109)National Key Research and Development Program of China(2018YFB0905600 and 2017YFB0310400)National Natural Science Foundation of China(51472188 and 51521001)Natural Research Funds of Hubei Province(2016CFB583)Natural Research Funds of Shenzhen,Fundamental Research Funds for the Central Universities China,State Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology)the Science and Technology Project of the Global Energy Interconnection Research Institute Co.,Ltd.(SGGR0000WLJS1801080)the 111 Project(B13035)。
文摘Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.
基金Funded by the Natural Science Foundation of Hubei province(2005ABB023)Wuhan city dawn plan(20055003059)
文摘Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.
基金financially supported by the Shenyang Young and Middle-aged Scientific and Technological Innovation Talents Program(RC190490)the Liaoning Revitalization Talents Program(No.XLYC1808030)。
文摘A novel α+β titanium alloy with multi-alloying addition was designed based on the cluster formula 12[Al-Ti_(12)](AlTi_(2))+5[Al-Ti_(14)](AlV_(1.2)Mo_(0.6)Nb_(0.2))which was derived from Ti-6Al-4V.The nominal composition of this novel alloy was determined as Ti-6.83Al-2.28V-2.14Mo-0.69Nb-6.79Zr.In this study,the novel alloy and Ti-6Al-4V alloy samples were prepared by laser additive manufacturing.The microstructure,micro-hardness,room/high temperature tensile properties of the as-deposited samples were investigated.Compared to Ti-6Al-4V,the novel alloy has much higher room and high temperature(600℃)tensile strengths,which are 1,427.5 MPa and 642.2 MPa,respectively;however,it has a much lower elongation(3.2%)at room temperature because of the finer microstructure.To improve the elongation of the novel alloy,heat treatment was used.After solution at 960℃ or 970℃ for 1 h followed by air cooling and aging at 550℃ for 4 h followed by air cooling,a unique bi-modal microstructure which contains crab-like primaryαand residual β phase is obtained,improving the compression elongation by 80.9% compared to the as-deposited samples.The novel alloy can be used as a high-temperature and high-strength candidate for laser additive manufacturing.