期刊文献+
共找到5,762篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
1
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
下载PDF
Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning
2
作者 D.Dorathy Prema Kavitha L.Francis Raj +3 位作者 Sandeep Kautish Abdulaziz S.Almazyad Karam M.Sallam Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期801-816,共16页
The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye ... The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes. 展开更多
关键词 Convolutional Neural Network(CNN) glaucomatous eyes fuzzy difference equation intuitive fuzzy sets image segmentation retinal images
下载PDF
Efficient Finite Difference/Spectral Method for the Time Fractional Ito Equation Using Fast Fourier Transform Technic
3
作者 Dakang Cen Zhibo Wang Seakweng Vong 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1591-1600,共10页
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c... A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples. 展开更多
关键词 Time fractional Ito equation Finite difference method Spectral method STABILITY
下载PDF
The Solutions and the Dynamic Behavior of the Rational Difference Equations
4
作者 Nisreen A. Bukhary Elsayed M. Elsayed 《Journal of Applied Mathematics and Physics》 2023年第2期525-540,共16页
The main purpose of this paper is to study the dynamic behavior of the rational difference equation of the fourth order Where α, β and γ are positive constants and the initial conditions y<sub>-3</sub>,... The main purpose of this paper is to study the dynamic behavior of the rational difference equation of the fourth order Where α, β and γ are positive constants and the initial conditions y<sub>-3</sub>, y<sub>-2</sub>, y<sub>-1</sub>, y<sub>0</sub> are arbitrary positive real numbers. Also, we obtain the solution of some special cases of this equation and investigate the existence of a periodic solutions of these equations. Finally, some numerical examples will be given to explicate our results. . 展开更多
关键词 difference equation Local Stability Global Attractor BOUNDEDNESS PERIODIC
下载PDF
PROPERTIES OF DIFFERENCE PAINLEV IV EQUATIONS 被引量:1
5
作者 蓝双婷 陈宗煊 《Acta Mathematica Scientia》 SCIE CSCD 2017年第6期1830-1840,共11页
In this paper, we investigate difference Painleve IV equations, and obtain some results on Nevanlinna exceptional values of transcendental meromorphic solutions w(z) with finite order, their differences △w(z) ... In this paper, we investigate difference Painleve IV equations, and obtain some results on Nevanlinna exceptional values of transcendental meromorphic solutions w(z) with finite order, their differences △w(z) = w(z + 1) - w(z) and divided differences △w(z)/w(z). 展开更多
关键词 difference painleve IV equation Nevanlinna exceptional value fixed point
下载PDF
A-high-order Accuraqcy Implicit Difference Scheme for Solving the Equation of Parabolic Type 被引量:7
6
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第2期94-97,共4页
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(... In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method. 展开更多
关键词 equation of one_dimension parabolic type high_order accuracy implicit difference scheme
下载PDF
CONSERVATIVE DIFFERENCE SCHEME BASED ON NUMERICAL ANALYSIS FOR NONLINEAR SCHRDINGER EQUATION WITH WAVE OPERATOR 被引量:2
7
作者 王廷春 张鲁明 陈芳启 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期87-93,共7页
A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and im... A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme. 展开更多
关键词 Schroedinger equation difference scheme CONSERVATION existence and uniqueness of solution CONVERGENCE
下载PDF
An Explicit Difference Scheme with High Accuracy and Branching Stability for Solving Parabolic Partial Differential Equation 被引量:4
8
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第4期98-103,共6页
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△... This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2. 展开更多
关键词 parabolic type equation explicit difference scheme high accuracy branching stability truncation er
下载PDF
HIGH RESOLUTION POSITIVITY-PRESERVING DIFFERENCE SCHEMES FOR TWO DIMENSIONAL EULER EQUATIONS
9
作者 赵宁 张虎 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期163-168,共6页
A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi... A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful. 展开更多
关键词 Euler equation Boltzmann equation finite difference scheme positivity preserving
下载PDF
Global Attractivity of a Kind of Delay Difference Equations
10
作者 李先义 朱德明 金银来 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第1期9-18,共10页
Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjectur... Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjecture forward. 展开更多
关键词 delay difference equation global attractivity positive semicycle negative semicycle periodic point of prime period two
下载PDF
Asymptotic Behavior and Nonexistence of Positive Solutions of Delay Difference Equations *L
11
作者 彭名书 徐千里 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期25-30,共6页
Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some i... Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included. 展开更多
关键词 OSCILLATION asymptotic behavior positive solution neutral delay difference equation NONLINEARITY
下载PDF
Propagation and Pinning of Travelling Wave for Nagumo Type Equation
12
作者 Sharon-Yasotha Veerayah-Mcgregor Valipuram Manoranjan 《Journal of Applied Mathematics and Physics》 2024年第3期861-869,共9页
In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population ... In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen. 展开更多
关键词 Operator Splitting Travelling Wave Piecewise Reaction Nagumo equation PINNING Finite differences
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
13
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
下载PDF
Rational solutions of Painlevé-Ⅱequation as Gram determinant
14
作者 张晓恩 陆冰滢 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期200-211,共12页
Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented... Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented by the Gram determinant,and then we give the large y asymptotics of the determinant and the rational solutions.Finally,the solution of the corresponding Riemann-Hilbert problem is obtained from the Darboux matrices. 展开更多
关键词 painlevé-Ⅱequation Darboux transformation rational solutions
原文传递
High-Order Spatial FDTD Solver of Maxwell’s Equations for Terahertz Radiation Production
15
作者 Abdelrahman Mahdy 《Journal of Applied Mathematics and Physics》 2024年第4期1028-1042,共15页
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament... We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. 展开更多
关键词 The Finite-difference-Time-Domain Terahertz Radiation Production Filamentation of Femtosecond Laser Maxwell’s equations Solution
下载PDF
Semi-Implicit Scheme to Solve Allen-Cahn Equation with Different Boundary Conditions
16
作者 Banan Alqanawi Musa Adam Aigo 《American Journal of Computational Mathematics》 2023年第1期122-135,共14页
The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part o... The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently. 展开更多
关键词 Semi-Implicit Schemes Allen-Cahn equations Finite difference Sparse System Jacobi Fixed Point GAUSS-SEIDEL
下载PDF
New exact solutions to some difference differential equations 被引量:15
17
作者 王振 张鸿庆 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第10期2210-2215,共6页
In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions ... In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference-differential equations. 展开更多
关键词 difference differential equation soliton solutions Lotka-Volterra equation discrete KdV equation
原文传递
THE GROWTH ORDER OF SOLUTIONS OF SYSTEMS OF COMPLEX DIFFERENCE EQUATIONS 被引量:17
18
作者 高凌云 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期814-820,共7页
Using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron theory of entire functions, we investigate the problem of growth order of solutions of a type of systems of difference equat... Using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron theory of entire functions, we investigate the problem of growth order of solutions of a type of systems of difference equations, and extend some results of the growth order of solutions of systems of differential equations to systems of difference equations. 展开更多
关键词 Growth order difference equations entire function
下载PDF
The Existence of Meromorphic Solutions to Non-Linear Delay Differential Equations
19
作者 Mingyue Wu 《Open Journal of Applied Sciences》 2023年第12期2329-2342,共14页
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c... In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate. 展开更多
关键词 Non-Linear Delay differential equations painlevé Type equations Nevanlinna Theory Meromorphic Function Solutions Minimal Hypertype
下载PDF
KAMENEV-TYPE OSCILLATION CRITERIA FOR DELAY DIFFERENCE EQUATIONS 被引量:6
20
作者 程金发 《Acta Mathematica Scientia》 SCIE CSCD 2007年第3期574-580,共7页
Some oscillation criteria are established by Raccati transformation techniques for the following second-order nonlinear neutral difference equation △(pn(△(Xn + CnXn-τ))^γ) + qnX^Bn-σ = 0, n :0, 1, 2...wh... Some oscillation criteria are established by Raccati transformation techniques for the following second-order nonlinear neutral difference equation △(pn(△(Xn + CnXn-τ))^γ) + qnX^Bn-σ = 0, n :0, 1, 2...which extend and include several oscillation criteria in [11], and also correct a theorem and its proof in [10]. 展开更多
关键词 OSCILLATION SUPERLINEAR SUBLINEAR difference equations
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部