Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ...Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.展开更多
The connected autonomous vehicle is considered an effective way to improve transport safety and efficiency.To overcome the limited sensing and computing capabilities of individual vehicles,we design a digital twin ass...The connected autonomous vehicle is considered an effective way to improve transport safety and efficiency.To overcome the limited sensing and computing capabilities of individual vehicles,we design a digital twin assisted decision-making framework for Internet of Vehicles,by leveraging the integration of communication,sensing and computing.In this framework,the digital twin entities residing on edge can effectively communicate and cooperate with each other to plan sub-targets for their respective vehicles,while the vehicles only need to achieve the sub-targets by generating a sequence of atomic actions.Furthermore,we propose a hierarchical multiagent reinforcement learning approach to implement the framework,which can be trained in an end-to-end way.In the proposed approach,the communication interval of digital twin entities could adapt to timevarying environment.Extensive experiments on driving decision-making have been performed in traffic junction scenarios of different difficulties.The experimental results show that the proposed approach can largely improve collaboration efficiency while reducing communication overhead.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)paramet...A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.展开更多
Background:There is mounting evidence that regular physical activity is an important prerequisite for healthy cognitive aging.Consequently,the finding that almost one-third of the adult population does not reach the r...Background:There is mounting evidence that regular physical activity is an important prerequisite for healthy cognitive aging.Consequently,the finding that almost one-third of the adult population does not reach the recommended level of regular physical activity calls for further public health actions.In this context,digital and home-based physical training interventions might be a promising alternative to center-based intervention programs.Thus,this systematic review aimed to summarize the current state of the literature on the effects of digital and home-based physical training interventions on adult cognitive performance.Methods:In this pre-registered systematic review(PROSPERO;ID:CRD42022320031),5 electronic databases(PubMed,Web of Science,Psyclnfo,SPORTDiscus,and Cochrane Library)were searched by 2 independent researchers(FH and PT)to identify eligible studies investigating the effects of digital and home-based physical training interventions on cognitive performance in adults.The systematic literature search yielded 8258 records(extra17 records from other sources),of which 27 controlled trials were considered relevant.Two reviewers(FH and PT)independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise(TESTEX scale).Results:Of the 27 reviewed studies,15 reported positive effects on cognitive and motor-cognitive outcomes(i.e.,performance improvements in measures of executive functions,working memory,and choice stepping reaction test),and a considerable heterogeneity concerning study-related,population-related,and intervention-related characteristics was noticed.A more detailed analysis suggests that,in particular,interventions using online classes and technology-based exercise devices(i.e.,step-based exergames)can improve cognitive performance in healthy older adults.Approximately one-half of the reviewed studies were rated as having a high risk of bias with respect to completion adherence(≤85%)and monitoring of the level of regular physical activity in the control group.Conclusion:The current state of evidence concerning the effectiveness of digital and home-based physical training interventions is mixed overall,though there is limited evidence that specific types of digital and home-based physical training interventions(e.g.,online classes and step-based exergames)can be an effective strategy for improving cognitive performance in older adults.However,due to the limited number of available studies,future high-quality studies are needed to buttress this assumption empirically and to allow for more solid and nuanced conclusions.展开更多
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara...The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practi...The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practical interest.However,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this term.The purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing industry.Notably,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.展开更多
The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulati...The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulating human physical and cognitive aspects to support ergonomic analysis.However,it has limitations in real-time data usage,personalized services,and timely interaction.The emerging HDT concept offers new possibilities by integrating multi-source data and artificial intelligence for continuous monitoring and assessment.Hence,this paper reviews the evolution from DHM to HDT and proposes a unified HDT framework from a human factors perspective.The framework comprises the physical twin,the virtual twin,and the linkage between these two.The virtual twin integrates human modeling and AI engines to enable model-data-hybrid-enabled simulation.HDT can potentially upgrade traditional ergonomic methods to intelligent services through real-time analysis,timely feedback,and bidirectional interactions.Finally,the future perspectives of HDT for industrial applications as well as technical and social challenges are discussed.In general,this study outlines a human factors perspective on HDT for the first time,which is useful for cross-disciplinary research and human factors innovation to enhance the development of HDT in industry.展开更多
为探索GS1 Digital Link技术在产品物流中的应用潜力,分析研究了GS1系统和GS1 Digital Link的基本结构、编码特点以及技术优势,充分利用GS1 Digital Link技术可以为产品从源头到零售整个物流过程提供相关对象的Web地址编码的特点,以鲜...为探索GS1 Digital Link技术在产品物流中的应用潜力,分析研究了GS1系统和GS1 Digital Link的基本结构、编码特点以及技术优势,充分利用GS1 Digital Link技术可以为产品从源头到零售整个物流过程提供相关对象的Web地址编码的特点,以鲜活大闸蟹物流过程为例,构建了基于GS1 Digital Link的鲜活大闸蟹Web编码,为实现产品营销与追溯提供了标准化、动态化、多样化的编码数据支撑。展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
Background The triple digital divide refers to the lack of internet access,use and knowledge among specific populations.In China,middle-aged and older adults and those living in rural areas or various regions of the c...Background The triple digital divide refers to the lack of internet access,use and knowledge among specific populations.In China,middle-aged and older adults and those living in rural areas or various regions of the country are more likely to have limited internet access and skills and,thus,have less accessibility to internet services.Few longitudinal studies have explored the association between the digital divide and the progression of depressive symptoms among middle-aged and older Chinese adults.Significantly,none of the existing studies have estimated this long-term relationship from a disparity perspective.Aims This study investigates the association between the triple digital divide and depressive symptom trajectories among middle-aged and older adults in China during a 10-year follow-up period from 2011 to 2020.Methods The sample for this secondary analysis comprises 3019 urban and 10427 rural respondents selected from the China Health and Retirement Longitudinal Study baseline survey in 2011.Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale.Employing longitudinal mixed-effects models,this study explored the association between the triple digital divide and depressive symptom trajectories among middle-aged and older Chinese adults by examining gender,rural-urban and regional disparities in this relationship.Results Our findings revealed a significant association between the triple digital divide and increasing trajectories of depressive symptoms,showing significant disparities based on gender,rural-urban dwelling and regional location.Notably,for both male and female participants who resided in urban areas or the central region of the country,their ability to use the internet,coupled with enhanced internet skills and greater access to internet services,was found to have a mitigating effect on the increasing trajectories of depressive symptoms.Conclusions To alleviate some of the confounding influences on the trajectory of depression in middle-aged and older adults,policymakers in China should continue to prioritise the development of internet technology,foster easy access to the internet to ensure it is'elder-friendly',provide internet skill training platforms for this population and broaden access to various internet services appropriate for them.Additionally,the implementation of tailored interventions to address depression,especially targeting the more vulnerable cohorts,such as middle-aged and older women,those residing in rural areas and the western regions,is crucial.Such tailored approaches are essential for addressing the disparities and challenges associated with the triple digital divide.展开更多
The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-ma...The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model.展开更多
The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules...The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).展开更多
Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote m...Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.展开更多
基金supported by the State Grid Jilin Province Electric Power Co,Ltd-Research and Application of Power Grid Resilience Assessment and Coordinated Emergency Technology of Supply and Network for the Development of New Power System in Alpine Region(Project Number is B32342210001).
文摘Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.
基金supported in part by the Natural Science Foundation of China under Grant 62001054,Grant 62272053 and Grant 61901191in part by the Natural Science Foundation of Shandong Province of China under Grant ZR2020LZH005in part by the Fundamental Research Funds for the Central Universities。
文摘The connected autonomous vehicle is considered an effective way to improve transport safety and efficiency.To overcome the limited sensing and computing capabilities of individual vehicles,we design a digital twin assisted decision-making framework for Internet of Vehicles,by leveraging the integration of communication,sensing and computing.In this framework,the digital twin entities residing on edge can effectively communicate and cooperate with each other to plan sub-targets for their respective vehicles,while the vehicles only need to achieve the sub-targets by generating a sequence of atomic actions.Furthermore,we propose a hierarchical multiagent reinforcement learning approach to implement the framework,which can be trained in an end-to-end way.In the proposed approach,the communication interval of digital twin entities could adapt to timevarying environment.Extensive experiments on driving decision-making have been performed in traffic junction scenarios of different difficulties.The experimental results show that the proposed approach can largely improve collaboration efficiency while reducing communication overhead.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金This work was supported by the National Key R&D Program of China(Nos.2023YFA1606403 and 2023YFE0101600)the National Natural Science Foundation of China(Nos.12027809,11961141003,U1967201,11875073 and 11875074).
文摘A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.
文摘Background:There is mounting evidence that regular physical activity is an important prerequisite for healthy cognitive aging.Consequently,the finding that almost one-third of the adult population does not reach the recommended level of regular physical activity calls for further public health actions.In this context,digital and home-based physical training interventions might be a promising alternative to center-based intervention programs.Thus,this systematic review aimed to summarize the current state of the literature on the effects of digital and home-based physical training interventions on adult cognitive performance.Methods:In this pre-registered systematic review(PROSPERO;ID:CRD42022320031),5 electronic databases(PubMed,Web of Science,Psyclnfo,SPORTDiscus,and Cochrane Library)were searched by 2 independent researchers(FH and PT)to identify eligible studies investigating the effects of digital and home-based physical training interventions on cognitive performance in adults.The systematic literature search yielded 8258 records(extra17 records from other sources),of which 27 controlled trials were considered relevant.Two reviewers(FH and PT)independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise(TESTEX scale).Results:Of the 27 reviewed studies,15 reported positive effects on cognitive and motor-cognitive outcomes(i.e.,performance improvements in measures of executive functions,working memory,and choice stepping reaction test),and a considerable heterogeneity concerning study-related,population-related,and intervention-related characteristics was noticed.A more detailed analysis suggests that,in particular,interventions using online classes and technology-based exercise devices(i.e.,step-based exergames)can improve cognitive performance in healthy older adults.Approximately one-half of the reviewed studies were rated as having a high risk of bias with respect to completion adherence(≤85%)and monitoring of the level of regular physical activity in the control group.Conclusion:The current state of evidence concerning the effectiveness of digital and home-based physical training interventions is mixed overall,though there is limited evidence that specific types of digital and home-based physical training interventions(e.g.,online classes and step-based exergames)can be an effective strategy for improving cognitive performance in older adults.However,due to the limited number of available studies,future high-quality studies are needed to buttress this assumption empirically and to allow for more solid and nuanced conclusions.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3901403 and 2023YFC3007203).
文摘The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
基金This research is supported by National Natural Science Foundation of China(No.61902158).
文摘The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practical interest.However,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this term.The purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing industry.Notably,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.
基金Supported by National Natural Science Foundation of China(Grant No.72071179)ZJU-Sunon Joint Research Center of Smart Furniture,Zhejiang University,China.
文摘The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulating human physical and cognitive aspects to support ergonomic analysis.However,it has limitations in real-time data usage,personalized services,and timely interaction.The emerging HDT concept offers new possibilities by integrating multi-source data and artificial intelligence for continuous monitoring and assessment.Hence,this paper reviews the evolution from DHM to HDT and proposes a unified HDT framework from a human factors perspective.The framework comprises the physical twin,the virtual twin,and the linkage between these two.The virtual twin integrates human modeling and AI engines to enable model-data-hybrid-enabled simulation.HDT can potentially upgrade traditional ergonomic methods to intelligent services through real-time analysis,timely feedback,and bidirectional interactions.Finally,the future perspectives of HDT for industrial applications as well as technical and social challenges are discussed.In general,this study outlines a human factors perspective on HDT for the first time,which is useful for cross-disciplinary research and human factors innovation to enhance the development of HDT in industry.
文摘为探索GS1 Digital Link技术在产品物流中的应用潜力,分析研究了GS1系统和GS1 Digital Link的基本结构、编码特点以及技术优势,充分利用GS1 Digital Link技术可以为产品从源头到零售整个物流过程提供相关对象的Web地址编码的特点,以鲜活大闸蟹物流过程为例,构建了基于GS1 Digital Link的鲜活大闸蟹Web编码,为实现产品营销与追溯提供了标准化、动态化、多样化的编码数据支撑。
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
基金supported by the National Postdoctoral Researcher Program(GZC20231325).
文摘Background The triple digital divide refers to the lack of internet access,use and knowledge among specific populations.In China,middle-aged and older adults and those living in rural areas or various regions of the country are more likely to have limited internet access and skills and,thus,have less accessibility to internet services.Few longitudinal studies have explored the association between the digital divide and the progression of depressive symptoms among middle-aged and older Chinese adults.Significantly,none of the existing studies have estimated this long-term relationship from a disparity perspective.Aims This study investigates the association between the triple digital divide and depressive symptom trajectories among middle-aged and older adults in China during a 10-year follow-up period from 2011 to 2020.Methods The sample for this secondary analysis comprises 3019 urban and 10427 rural respondents selected from the China Health and Retirement Longitudinal Study baseline survey in 2011.Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale.Employing longitudinal mixed-effects models,this study explored the association between the triple digital divide and depressive symptom trajectories among middle-aged and older Chinese adults by examining gender,rural-urban and regional disparities in this relationship.Results Our findings revealed a significant association between the triple digital divide and increasing trajectories of depressive symptoms,showing significant disparities based on gender,rural-urban dwelling and regional location.Notably,for both male and female participants who resided in urban areas or the central region of the country,their ability to use the internet,coupled with enhanced internet skills and greater access to internet services,was found to have a mitigating effect on the increasing trajectories of depressive symptoms.Conclusions To alleviate some of the confounding influences on the trajectory of depression in middle-aged and older adults,policymakers in China should continue to prioritise the development of internet technology,foster easy access to the internet to ensure it is'elder-friendly',provide internet skill training platforms for this population and broaden access to various internet services appropriate for them.Additionally,the implementation of tailored interventions to address depression,especially targeting the more vulnerable cohorts,such as middle-aged and older women,those residing in rural areas and the western regions,is crucial.Such tailored approaches are essential for addressing the disparities and challenges associated with the triple digital divide.
文摘The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model.
文摘The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).
基金Supported by Tianjin Municipal University Science and Technology Development Foundation of China(Grant No.2021KJ176).
文摘Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.