A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital c...A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.展开更多
The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-no...The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-noise ratio (SNR) metric. Two different WDM photonic ADC architectures are considered for the digitization of radar signals with 5 GHz of bandwidth (spatial resolution of 3 cm), in order to provide a comprehensive study of the compromises present when deploying radar signals with high-resolution: 1) a four-channel architecture with each channel employing an ADC with 5 GSamples/s, and 2) an eight-channel architecture with each channel employing an ADC with 2.5 GSamples/s. For peak powers of the pulsed source between 10 and 20 dBm and a distance between the radar antenna and the sensing object of 2.4 meters, peak SNR levels between 29 and 39 dB are achieved with the eight-channel architecture, which shows higher peak SNR levels when compared with the four-channel architecture. For the eight-channel architecture and for the same peak powers of the pulsed source, peak SNR levels between 11 and 16 dB are obtained when the distance increases to 13.5 meters. With this evaluation using the peak SNR, it is possible to assess the performance limits when choosing a specific radar range, while keeping the same resolution.展开更多
This paper begins with Nyquist wavelengthdivision multiplexing (WDM) and then introduces fasterthanNyquist. In fasterthanNyquist a certain amount of intersymbol interference (ISI) is accepted, which violates the f...This paper begins with Nyquist wavelengthdivision multiplexing (WDM) and then introduces fasterthanNyquist. In fasterthanNyquist a certain amount of intersymbol interference (ISI) is accepted, which violates the fundamental principle of Nyquist WDM. This results in muchrelaxed transceiver bandwidth and simpler spectral design. However, in fasterthanNyquist, implementation complexity is shifted from the transmitter side to the receiver side. Therefore, successful application of fasterthanNyquist depends on innovation in the receiver structure. In this paper, we discuss the guidelines for implementing suboptimum, lowcomplexity receivers based on fasterthanNyquist. We suggest that duobinary shaping is a good technique for trading off achievable spectral efficiency, detection performance, and implementation complexity and might be preferable to Nyquist WDM. Experiments are conducted to verify robustness of the proposed technique.展开更多
The carrier-free phase-retrieval(CF-PR)receiver can reconstruct the optical field information only from two de-correlated intensity measurements without the involvement of a continuous-wave optical carrier.Here,we pro...The carrier-free phase-retrieval(CF-PR)receiver can reconstruct the optical field information only from two de-correlated intensity measurements without the involvement of a continuous-wave optical carrier.Here,we propose a digital subcarrier multiplexing(DSM)-enabled CF-PR receiver with hardware-efficient and modulation format-transparent merits.By numerically retrieving the optical field information of 56 GBaud DSM signals with QPSK/16QAM/32QAM modulation after 80-km standard single-mode fiber(SSMF)transmission,we identify that the DSM enabled CF-PR receiver is beneficial in reducing the implementation complexity of the CF-PR process,in comparison with the traditional single-carrier counterpart,because the lower symbol rate of each subcarrier is helpful in reducing the implementation complexity of multiple chromatic dispersion compensations and emulations during the PR iteration.Moreover,the DSM-enabled CF-PR receiver is verified to be robust toward various transmission imperfections,including transmitter-side laser linewidth and its wavelength drift,receiver-side time skew,and amplitude imbalance between two intensity tributaries.Finally,the superiority of the DSM-enabled CF-PR receiver is experimentally verified by recovering the optical field information of 25 GBaud 16QAM signals,after 40-km SSMF transmission for the first time.Thus,the DSM-enabled CF-PR receiver is promising for high-capacity photonic interconnection with direct detection.展开更多
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur...In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.展开更多
This paper describes field trials of two-way digital video transmissions over a 700-m long medium-voltage power cable using a frequency division duplex scheme. The purpose is to check the feasibility of using time-dom...This paper describes field trials of two-way digital video transmissions over a 700-m long medium-voltage power cable using a frequency division duplex scheme. The purpose is to check the feasibility of using time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology in powerline communication (PLC). TDS-OFDM is the core technology in digital multimedia broadcasting-terrestrial (DMB-T), developed by Tsinghua University for digital television terrestrial multimedia broadcast applications and successfully adopted in the Chinese Digital Terrestrial Television Broadcasting Standard. PLC systems are widely believed to be bandwidth or data throughput limited. However, the use of known pseudo random sequences as guard intervals for synchronization and channel estimation in TDS-OFDM greatly reduces the system overhead and increases the spectrum efficiency. These experiments show that TDS-OFDM is appropriate not only for broadcasting but also for PLC applications with appropriate modifications.展开更多
We propose a high-speed playback method for the spatiotemporal division multiplexing electroholographic three-dimensional(3D)video stored in a solid-state drive(SSD)using a digital micromirror device.The spatiotempora...We propose a high-speed playback method for the spatiotemporal division multiplexing electroholographic three-dimensional(3D)video stored in a solid-state drive(SSD)using a digital micromirror device.The spatiotemporal division multiplexing electroholography prevents deterioration in the reconstructed 3D video from a 3D object comprising many object points.In the proposed method,the stored data is remarkably reduced using the packing technique,and the computer-generated holograms are played back at high speed.Consequently,we successfully reconstructed a clear 3D video of a 3D object comprising approximately 1,100,000 points at 60 frames per second by reducing the reading time of the stored data from an SSD.展开更多
In Digital Radio Mondiale (DRM) system, achieving good audio quality becomes a challenge due to its limited band-width of 9 or 10kHz and the very bad lading channels. Therefore, DRM needs highly efficient channel co...In Digital Radio Mondiale (DRM) system, achieving good audio quality becomes a challenge due to its limited band-width of 9 or 10kHz and the very bad lading channels. Therefore, DRM needs highly efficient channel coding schemes. This paper, proposes the schemes which use the Low-Density Parity-Check (LDPC) coded Bit-Interleaved Coded Modulation (BICM) schemes for the implementation of DRM systems. Simulation results show that the proposed system is more efficient than the Rate Compatible Punctured Convolutional (RCPC) coded DRM system on various broadcast channels, and may be recommended as a coding technology for Digital Amplitude Modulation Broadcasting (DAMB) systems of China.展开更多
Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large ...Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large number of hardware resources and severely lower down the operation speed. To address these limitations, we propose a novel OFDM transmitter architecture, by which the aforementioned modules can be discarded and replaced with some simple switches. In the proposed architecture, direct digital synthesis(DDS) method is employed to generate digital sub-carriers and to transform OFDM data from frequency domain to time domain. Through some sophisticated simplifications, the proposed architecture can avoid using multipliers and remarkably save hardware resources. Finally, comparative experiments are carried out on field programmable gate array(FPGA) platform which demonstrates that our DDS-based architecture saves more than half of the hardware resources and doubles the achievable maximum frequency compared with traditional structure.展开更多
文摘A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.
文摘The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-noise ratio (SNR) metric. Two different WDM photonic ADC architectures are considered for the digitization of radar signals with 5 GHz of bandwidth (spatial resolution of 3 cm), in order to provide a comprehensive study of the compromises present when deploying radar signals with high-resolution: 1) a four-channel architecture with each channel employing an ADC with 5 GSamples/s, and 2) an eight-channel architecture with each channel employing an ADC with 2.5 GSamples/s. For peak powers of the pulsed source between 10 and 20 dBm and a distance between the radar antenna and the sensing object of 2.4 meters, peak SNR levels between 29 and 39 dB are achieved with the eight-channel architecture, which shows higher peak SNR levels when compared with the four-channel architecture. For the eight-channel architecture and for the same peak powers of the pulsed source, peak SNR levels between 11 and 16 dB are obtained when the distance increases to 13.5 meters. With this evaluation using the peak SNR, it is possible to assess the performance limits when choosing a specific radar range, while keeping the same resolution.
文摘This paper begins with Nyquist wavelengthdivision multiplexing (WDM) and then introduces fasterthanNyquist. In fasterthanNyquist a certain amount of intersymbol interference (ISI) is accepted, which violates the fundamental principle of Nyquist WDM. This results in muchrelaxed transceiver bandwidth and simpler spectral design. However, in fasterthanNyquist, implementation complexity is shifted from the transmitter side to the receiver side. Therefore, successful application of fasterthanNyquist depends on innovation in the receiver structure. In this paper, we discuss the guidelines for implementing suboptimum, lowcomplexity receivers based on fasterthanNyquist. We suggest that duobinary shaping is a good technique for trading off achievable spectral efficiency, detection performance, and implementation complexity and might be preferable to Nyquist WDM. Experiments are conducted to verify robustness of the proposed technique.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB2900702)the National Natural Science Foundation of China(Grant No.U21A20506)the Guangdong Introducing Innovative and Entrepreneurial Teams of“The Pearl River Talent Recruitment Program”(Grant No.2021ZT09X044).
文摘The carrier-free phase-retrieval(CF-PR)receiver can reconstruct the optical field information only from two de-correlated intensity measurements without the involvement of a continuous-wave optical carrier.Here,we propose a digital subcarrier multiplexing(DSM)-enabled CF-PR receiver with hardware-efficient and modulation format-transparent merits.By numerically retrieving the optical field information of 56 GBaud DSM signals with QPSK/16QAM/32QAM modulation after 80-km standard single-mode fiber(SSMF)transmission,we identify that the DSM enabled CF-PR receiver is beneficial in reducing the implementation complexity of the CF-PR process,in comparison with the traditional single-carrier counterpart,because the lower symbol rate of each subcarrier is helpful in reducing the implementation complexity of multiple chromatic dispersion compensations and emulations during the PR iteration.Moreover,the DSM-enabled CF-PR receiver is verified to be robust toward various transmission imperfections,including transmitter-side laser linewidth and its wavelength drift,receiver-side time skew,and amplitude imbalance between two intensity tributaries.Finally,the superiority of the DSM-enabled CF-PR receiver is experimentally verified by recovering the optical field information of 25 GBaud 16QAM signals,after 40-km SSMF transmission for the first time.Thus,the DSM-enabled CF-PR receiver is promising for high-capacity photonic interconnection with direct detection.
基金The National Natural Science Foundation of China (No.60872075)the National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)
文摘In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.
文摘This paper describes field trials of two-way digital video transmissions over a 700-m long medium-voltage power cable using a frequency division duplex scheme. The purpose is to check the feasibility of using time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology in powerline communication (PLC). TDS-OFDM is the core technology in digital multimedia broadcasting-terrestrial (DMB-T), developed by Tsinghua University for digital television terrestrial multimedia broadcast applications and successfully adopted in the Chinese Digital Terrestrial Television Broadcasting Standard. PLC systems are widely believed to be bandwidth or data throughput limited. However, the use of known pseudo random sequences as guard intervals for synchronization and channel estimation in TDS-OFDM greatly reduces the system overhead and increases the spectrum efficiency. These experiments show that TDS-OFDM is appropriate not only for broadcasting but also for PLC applications with appropriate modifications.
基金This work was partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(No.18K11399)and I-O DATA Foundation.
文摘We propose a high-speed playback method for the spatiotemporal division multiplexing electroholographic three-dimensional(3D)video stored in a solid-state drive(SSD)using a digital micromirror device.The spatiotemporal division multiplexing electroholography prevents deterioration in the reconstructed 3D video from a 3D object comprising many object points.In the proposed method,the stored data is remarkably reduced using the packing technique,and the computer-generated holograms are played back at high speed.Consequently,we successfully reconstructed a clear 3D video of a 3D object comprising approximately 1,100,000 points at 60 frames per second by reducing the reading time of the stored data from an SSD.
基金Supported by the National Natural Science Foundation of China(No.60072013).
文摘In Digital Radio Mondiale (DRM) system, achieving good audio quality becomes a challenge due to its limited band-width of 9 or 10kHz and the very bad lading channels. Therefore, DRM needs highly efficient channel coding schemes. This paper, proposes the schemes which use the Low-Density Parity-Check (LDPC) coded Bit-Interleaved Coded Modulation (BICM) schemes for the implementation of DRM systems. Simulation results show that the proposed system is more efficient than the Rate Compatible Punctured Convolutional (RCPC) coded DRM system on various broadcast channels, and may be recommended as a coding technology for Digital Amplitude Modulation Broadcasting (DAMB) systems of China.
基金Supported by the Educational Science Research Project of Hubei Province(B2014243)
文摘Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large number of hardware resources and severely lower down the operation speed. To address these limitations, we propose a novel OFDM transmitter architecture, by which the aforementioned modules can be discarded and replaced with some simple switches. In the proposed architecture, direct digital synthesis(DDS) method is employed to generate digital sub-carriers and to transform OFDM data from frequency domain to time domain. Through some sophisticated simplifications, the proposed architecture can avoid using multipliers and remarkably save hardware resources. Finally, comparative experiments are carried out on field programmable gate array(FPGA) platform which demonstrates that our DDS-based architecture saves more than half of the hardware resources and doubles the achievable maximum frequency compared with traditional structure.