The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high...The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high-current stage does not exist.In this study,a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model.The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current,discharge current,voltage,and gas flow under actual working conditions.The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms.The pulse waveforms obtained using the model are found to be consistent with the experimental results.The model is used to evaluate the process of rapid changes in plasma density.Additionally,this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.展开更多
A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characterist...A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.展开更多
The generation of a very strong peak current in the first period(PCFP)in a pulse-modulated microwave discharge has been discussed in previous studies.In this paper we focus on the transition process from a pulsed disc...The generation of a very strong peak current in the first period(PCFP)in a pulse-modulated microwave discharge has been discussed in previous studies.In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model.The computational results show that by increasing the duty cycle or voltage modulation rate(VMR).the discharge eventually becomes fully continuous and PCFP can no longer he observed.In the transition process,the distributions of the electric field,electron energy probability function(EEPF)and plasma density are discussed according to the simulation data,showing different discharge structures.The simulations indicate that many high-energy electrons with electron energy larger than 20eV and low-energy electrons with electron energy less than 3eV could he generated in a pulsed microwave discharge,together with a reversal electric field formed in the anode sheath when PCFP occurs.However,only medium-energy electrons could be observed in a fully continuous discharge.Therefore,by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.展开更多
The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. ...The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. A modified non-equilibrium plasma kinetic model was developed to simulate the temporal evolution of particles produced during nanosecond discharge and its afterglow. As important roles in ignition, path fluxes of O and H radicals were analyzed in detail. Different strength of E/N and different discharge duration were applied to the discharge process in this study. And the results presented that a deposited energy of 1–30 m J·cm^(-3) could dramatically reduce the ignition delay time. Furthermore, temperature and radicals analysis was conducted to investigate the effect of non-equilibrium plasma on production of intermediate radicals. Finally, sensitivity analysis was employed to have further understanding on ignition chemistries of the mixture under nanosecond discharge.展开更多
One function for approximating pulse quantities in high voltage technique is presented in this paper. The function derivative, its integral, as well as its Laplace and Fourier transform are obtained analytically. Inte...One function for approximating pulse quantities in high voltage technique is presented in this paper. The function derivative, its integral, as well as its Laplace and Fourier transform are obtained analytically. Integral transformations of the pulse function are needed in frequency domain calculations of lightning induced effects in the case of a lossy ground. The pulse function having adequately chosen parameters is applied in lightning discharge modeling for lightning electromagnetic field calculation, and the results are in agreement with the results from literature. The choice of function parameters is based on their influence on the pulse waveshape which is presented in the paper. Numerical results for the Fourier transform are presented for different usually used pulse functions. The advantages of this function are simple choice of its parameters according to the desired waveshape characteristics and analytical solutions useful in lightning discharge modeling, electromagnetic field computation and induced effects calculations.展开更多
A detailed analysis of operational process and principle of ammonia-recovery system in the modified equipment of flax fiber,which will be applied to parameters optimizing of the ammoniarecovery system as a foundationa...A detailed analysis of operational process and principle of ammonia-recovery system in the modified equipment of flax fiber,which will be applied to parameters optimizing of the ammoniarecovery system as a foundational principle,is presented. According to the principle,an ammonia compressor,whose working conditions are based on key operational parameters of the whole ammoniarecovery system, is the mainly energy-consumption part of ammonia-recovery system in the modified equipment of flax fiber. A generally mathematical model based on work efficiency of an ammonia compressor is founded,which is available to rate effective work and energy consumption of the ammonia compressor. The optimum operation-efficiency of the ammonia compressor is chosen as the goal to analyze and calculate the key operational parameters of the ammonia-recovery system. In the above analyzing and calculating,a mathematical model on ammonia flowing from the reactor to the register 1 is developed,in order to provide further understanding of the principle of an ammonia-recovery system. At the meantime,the ammonia flow regime in the pipeline and the process of ammonia inflation and deflation from the reactor to the register 1 are taken separately into account in the model. An iterative method is for obtaining parametric solutions of the mathematical model on ammonia flowing from the reactor to the register 1 and the key operational parameters of the ammoniarecovery system. A parametric analysis is put forward to complete showing the ammonia velocity or the state of the reactor and the register 1. The key optimized parameters will be achieved in term of the minimum efficiency after comparing the work efficiencies of an ammonia compressor at different working conditions.展开更多
The Public Works Research Institute Distributed Hydrological(PWRI-DH)for flood modeling is a combination of the tank model and the kinematic wave method.In the PWRI-DH model,fitting the required parameters plays a fun...The Public Works Research Institute Distributed Hydrological(PWRI-DH)for flood modeling is a combination of the tank model and the kinematic wave method.In the PWRI-DH model,fitting the required parameters plays a fundamental role.The developers of the PWRI-DH model have introduced the capability of obtaining parameters automatically using the baseline parameters;however,the results are not always the expected results because they depend on several factors and must be calibrated manually.The last issue has limited the interest of researchers regarding in the usage of the PWRI-DH model.In this paper,we present a methodology to obtain the parameters required for the PWRI-DH model that enables to focusing only on the key parameters.First,a parametric study is performed by identifying the influence of each parameter in the discharge.From this study,we found that only four parameters play a fundamental role in the flood modeling using the PWRI-DH model.Five flood events in the Upper Aikawa River basin are used to calibrate the model.The results showed that the proposed methodology is suitable and improve the efficient on the flood simulation of Aikawa River and similar rivers,when using the PWRI-DH model.展开更多
The human body model(HBM) stress of a no-connect metal cover is tested to obtain the characteristics of abnormal electrostatic discharge,including current waveforms and peak current under varied stress voltage and d...The human body model(HBM) stress of a no-connect metal cover is tested to obtain the characteristics of abnormal electrostatic discharge,including current waveforms and peak current under varied stress voltage and device failure voltage.A new discharge model called the "sparkover-induced model" is proposed based on the results.Then,failure mechanism analysis and model simulation are performed to prove that the transient peak current caused by a sparkover of low arc impedance will result in the devices' premature damage when the potential difference between the no-connect metal cover and the chip exceeds the threshold voltage of sparkover.展开更多
基金the financial support from National Natural Science Foundation of China(Nos.11402025,11475019,and 11702123)the National Key Laboratory of Science and Technology on Vacuum Technology&Physics(No.ZWK1608)+1 种基金the Advanced Space Propulsion Laboratory of BICEBeijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2018-03)。
文摘The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high-current stage does not exist.In this study,a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model.The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current,discharge current,voltage,and gas flow under actual working conditions.The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms.The pulse waveforms obtained using the model are found to be consistent with the experimental results.The model is used to evaluate the process of rapid changes in plasma density.Additionally,this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.
文摘The generation of a very strong peak current in the first period(PCFP)in a pulse-modulated microwave discharge has been discussed in previous studies.In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model.The computational results show that by increasing the duty cycle or voltage modulation rate(VMR).the discharge eventually becomes fully continuous and PCFP can no longer he observed.In the transition process,the distributions of the electric field,electron energy probability function(EEPF)and plasma density are discussed according to the simulation data,showing different discharge structures.The simulations indicate that many high-energy electrons with electron energy larger than 20eV and low-energy electrons with electron energy less than 3eV could he generated in a pulsed microwave discharge,together with a reversal electric field formed in the anode sheath when PCFP occurs.However,only medium-energy electrons could be observed in a fully continuous discharge.Therefore,by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.
基金Supported by the National Natural Science Foundation of China(No.51376021)the Fundamental Research Funds for the Central Universities(No.2015YJS146)
文摘The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. A modified non-equilibrium plasma kinetic model was developed to simulate the temporal evolution of particles produced during nanosecond discharge and its afterglow. As important roles in ignition, path fluxes of O and H radicals were analyzed in detail. Different strength of E/N and different discharge duration were applied to the discharge process in this study. And the results presented that a deposited energy of 1–30 m J·cm^(-3) could dramatically reduce the ignition delay time. Furthermore, temperature and radicals analysis was conducted to investigate the effect of non-equilibrium plasma on production of intermediate radicals. Finally, sensitivity analysis was employed to have further understanding on ignition chemistries of the mixture under nanosecond discharge.
文摘One function for approximating pulse quantities in high voltage technique is presented in this paper. The function derivative, its integral, as well as its Laplace and Fourier transform are obtained analytically. Integral transformations of the pulse function are needed in frequency domain calculations of lightning induced effects in the case of a lossy ground. The pulse function having adequately chosen parameters is applied in lightning discharge modeling for lightning electromagnetic field calculation, and the results are in agreement with the results from literature. The choice of function parameters is based on their influence on the pulse waveshape which is presented in the paper. Numerical results for the Fourier transform are presented for different usually used pulse functions. The advantages of this function are simple choice of its parameters according to the desired waveshape characteristics and analytical solutions useful in lightning discharge modeling, electromagnetic field computation and induced effects calculations.
基金National Science and Technology Support Program,China(No.2012BAF13B03)Program of Shanghai Subject Chief Scientist,China(No.12XD1420300)
文摘A detailed analysis of operational process and principle of ammonia-recovery system in the modified equipment of flax fiber,which will be applied to parameters optimizing of the ammoniarecovery system as a foundational principle,is presented. According to the principle,an ammonia compressor,whose working conditions are based on key operational parameters of the whole ammoniarecovery system, is the mainly energy-consumption part of ammonia-recovery system in the modified equipment of flax fiber. A generally mathematical model based on work efficiency of an ammonia compressor is founded,which is available to rate effective work and energy consumption of the ammonia compressor. The optimum operation-efficiency of the ammonia compressor is chosen as the goal to analyze and calculate the key operational parameters of the ammonia-recovery system. In the above analyzing and calculating,a mathematical model on ammonia flowing from the reactor to the register 1 is developed,in order to provide further understanding of the principle of an ammonia-recovery system. At the meantime,the ammonia flow regime in the pipeline and the process of ammonia inflation and deflation from the reactor to the register 1 are taken separately into account in the model. An iterative method is for obtaining parametric solutions of the mathematical model on ammonia flowing from the reactor to the register 1 and the key operational parameters of the ammoniarecovery system. A parametric analysis is put forward to complete showing the ammonia velocity or the state of the reactor and the register 1. The key optimized parameters will be achieved in term of the minimum efficiency after comparing the work efficiencies of an ammonia compressor at different working conditions.
文摘The Public Works Research Institute Distributed Hydrological(PWRI-DH)for flood modeling is a combination of the tank model and the kinematic wave method.In the PWRI-DH model,fitting the required parameters plays a fundamental role.The developers of the PWRI-DH model have introduced the capability of obtaining parameters automatically using the baseline parameters;however,the results are not always the expected results because they depend on several factors and must be calibrated manually.The last issue has limited the interest of researchers regarding in the usage of the PWRI-DH model.In this paper,we present a methodology to obtain the parameters required for the PWRI-DH model that enables to focusing only on the key parameters.First,a parametric study is performed by identifying the influence of each parameter in the discharge.From this study,we found that only four parameters play a fundamental role in the flood modeling using the PWRI-DH model.Five flood events in the Upper Aikawa River basin are used to calibrate the model.The results showed that the proposed methodology is suitable and improve the efficient on the flood simulation of Aikawa River and similar rivers,when using the PWRI-DH model.
基金supported by the National Natural Science Foundation of China(No.60927006)
文摘The human body model(HBM) stress of a no-connect metal cover is tested to obtain the characteristics of abnormal electrostatic discharge,including current waveforms and peak current under varied stress voltage and device failure voltage.A new discharge model called the "sparkover-induced model" is proposed based on the results.Then,failure mechanism analysis and model simulation are performed to prove that the transient peak current caused by a sparkover of low arc impedance will result in the devices' premature damage when the potential difference between the no-connect metal cover and the chip exceeds the threshold voltage of sparkover.