The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The ...This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing.展开更多
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ...A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.展开更多
The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between ...The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between particles, a discrete equation based on continuum mechanics is proposed to investigate the heat flux. Heat generated internally by friction between moving particles is determined by kinetic equations. For the proposed model, numerical results are obtained by a particle-flow-code-based program. Temperature profiles are determined at different locations and times. At a fixed location, the increase in temperature shows a logarithmic relationship with time. Investigation of three different systems indicates that the geometric distribution of the particulate material is one of the main influencing factors for the heat conduction process. Higher temperature is generated for denser packing, and vice versa. For smaller uniform particles, heat transfers more rapidly.展开更多
Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to r...Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results.展开更多
The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investig...The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investigated for a binary mixture, represented by two different colors, under several loading profiles. The baffle effectively enhances the convective mixing both in the axial and radial directions, because of the disturbance it causes to the initial flowing layer and solid-body zone, compared with a blender without a baffle. The axial mixing rate is affected by the gap between the baffle and the wall on the left and right sides, and an optimal blade length corresponds to the maximum mixing rate. However, the radial mixing rate increases with the blade length almost monotonically.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
基金supported by the State Key Development Program for Basic Research of China (973 Program) (Grant No. 2007CB616905)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2007AA03Z112)+1 种基金the National Natural Science Foundation of China (Grant No. 10805019)the Natural Science Foundation of Guangdong Province of China (Grant No. 8451064101000083)
文摘This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120004)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485)
文摘A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.
基金S. Wang was supported by the Research Fund for Doctoral Program of Shandong Jianzhu University (Grant No. XNBS1338)and the National Natural Science Foundation of China (Grant No. 11471195). Z. Zheng was supported by the National Natural Science Foundation of China (Grant Nos. 51174236 and 51134003), the National Basic Research Program of China (Grant No. 2011 CB606306), and the Opening Project of State Key Laboratory of Porous Metal Materials, China (Grant No. PMM-SKL-4-2012).
文摘The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between particles, a discrete equation based on continuum mechanics is proposed to investigate the heat flux. Heat generated internally by friction between moving particles is determined by kinetic equations. For the proposed model, numerical results are obtained by a particle-flow-code-based program. Temperature profiles are determined at different locations and times. At a fixed location, the increase in temperature shows a logarithmic relationship with time. Investigation of three different systems indicates that the geometric distribution of the particulate material is one of the main influencing factors for the heat conduction process. Higher temperature is generated for denser packing, and vice versa. For smaller uniform particles, heat transfers more rapidly.
文摘Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results.
基金This work was supported by the National Key Basic Research Program of China under Grant No. 2015CB251402, the National Natural Science Foundation of China under Grant Nos. 21206167, 21225628, 91434201, and 91334204, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDA07080203, and CAS Interdisciplinary Innovation Team.
文摘The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investigated for a binary mixture, represented by two different colors, under several loading profiles. The baffle effectively enhances the convective mixing both in the axial and radial directions, because of the disturbance it causes to the initial flowing layer and solid-body zone, compared with a blender without a baffle. The axial mixing rate is affected by the gap between the baffle and the wall on the left and right sides, and an optimal blade length corresponds to the maximum mixing rate. However, the radial mixing rate increases with the blade length almost monotonically.