期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
1
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 Large-scale standing rotary cutting test discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
下载PDF
Simulation of random mixed packing of different density particles 被引量:1
2
作者 李元元 夏伟 +3 位作者 周照耀 何克晶 钟文镇 吴苑标 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期336-341,共6页
This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The ... This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing. 展开更多
关键词 mixed packing different densities granular particle discrete element method simulation
原文传递
DEM simulation of particle flow on a single deck banana screen 被引量:13
3
作者 Liu Chusheng Wang Hong +2 位作者 Zhao Yuemin Zhao Lala Dong Hailin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期277-281,共5页
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ... A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen. 展开更多
关键词 Banana screen Particle flow discrete element method Numerical simulation
下载PDF
Discrete element method for high-temperature spread in compacted powder systems 被引量:1
4
作者 Shuang Wang Zhoushun Zheng 《Particuology》 SCIE EI CAS CSCD 2017年第2期49-53,共5页
The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between ... The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between particles, a discrete equation based on continuum mechanics is proposed to investigate the heat flux. Heat generated internally by friction between moving particles is determined by kinetic equations. For the proposed model, numerical results are obtained by a particle-flow-code-based program. Temperature profiles are determined at different locations and times. At a fixed location, the increase in temperature shows a logarithmic relationship with time. Investigation of three different systems indicates that the geometric distribution of the particulate material is one of the main influencing factors for the heat conduction process. Higher temperature is generated for denser packing, and vice versa. For smaller uniform particles, heat transfers more rapidly. 展开更多
关键词 discrete element method Heat conduction Friction heat Numerical simulation
原文传递
Using the DEM-CFD method to predict Brownian particle deposition in a constricted tube 被引量:7
5
作者 Florian Chaumeil Martin Crapper 《Particuology》 SCIE EI CAS CSCD 2014年第4期94-106,共13页
Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to r... Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results. 展开更多
关键词 discrete element method DEM Colloids Agglomeration Deposition simulation
原文传递
Numerical analysis of enhanced mixing in a Gallay tote blender 被引量:4
6
作者 Xinxin Ren Guangzheng Zhou +2 位作者 Ji xu Lijie Cui Wei Ge 《Particuology》 SCIE EI CAS CSCD 2016年第6期95-102,共8页
The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investig... The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investigated for a binary mixture, represented by two different colors, under several loading profiles. The baffle effectively enhances the convective mixing both in the axial and radial directions, because of the disturbance it causes to the initial flowing layer and solid-body zone, compared with a blender without a baffle. The axial mixing rate is affected by the gap between the baffle and the wall on the left and right sides, and an optimal blade length corresponds to the maximum mixing rate. However, the radial mixing rate increases with the blade length almost monotonically. 展开更多
关键词 Powder mixing Tote blender Granular materials discrete element method simulation Baffle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部