期刊文献+
共找到1,743篇文章
< 1 2 88 >
每页显示 20 50 100
Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries
1
作者 Xin Chen Yu Zhang +5 位作者 Chang Chen Huinan Li Yuran Lin Ke Yu Caiyun Nan Chen Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期154-164,共11页
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult... Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery. 展开更多
关键词 Atomically dispersed Open hollow structure Discharge product LITHIUM Oxygen battery
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts
2
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Atomic Dispersed Hetero‑Pairs for Enhanced Electrocatalytic CO_(2)Reduction
3
作者 Zhaoyong Jin Meiqi Yang +13 位作者 Yilong Dong Xingcheng Ma Ying Wang Jiandong Wu Jinchang Fan Dewen Wang Rongshen Xi Xiao Zhao Tianyi Xu Jingxiang Zhao Lei Zhang David J.Singh Weitao Zheng Xiaoqiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期55-67,共13页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale. 展开更多
关键词 CO_(2)reduction reaction Atomic dispersed catalyst Hetero-diatomic pair Ad-desorption energy Linear scaling relation
下载PDF
Atomically Dispersed Dual‑Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis 被引量:1
4
作者 Jun‑Xi Wu Wen‑Xing Chen +4 位作者 Chun‑Ting He Kai Zheng Lin‑Ling Zhuo Zhen‑Hua Zhao Jie‑Peng Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期192-204,共13页
The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrog... The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst.Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure,which can serve as an efficient bifunctional electrocatalyst for overall water splitting.More importantly,the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups.Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates,giving a bridge between elementary reactions to break the conventional scaling relationship. 展开更多
关键词 Metal-organic frameworks Atomically dispersed catalyst Hydrogen bond Overall water splitting
下载PDF
New insight into the design of highly dispersed Pt supported CeO_(2)-TiO_(2) catalysts with superior activity for VOCs low-temperature removal 被引量:1
5
作者 Yijun Shi Xiaolin Guo +2 位作者 Yiyan Wang Fanzhe Kong Renxian Zhou 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1654-1663,共10页
A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless depo... A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless deposition method and evaluated for the deep oxidation of n-hexane as a model VOCs. The results show that the CeO_(2)and TiOxnanoparticles can highly disperse into each other and form Ce_(2)Ti_(2)O_(7)solid solution with appropriate Ce/Ti molar ratio, which significantly improves their redox ability by enhancing the interaction between CeO_(2)and TiO_(x). The dispersibility of Pt species can also be adjusted by altering the Ce/Ti molar ratio, and Pt/CeTi-2/1 catalyst with Ce/Ti molar ratio of 2:1 exhibits the best Pt dispersibility that Pt species mainly exist as Pt single atoms. The high dispersion of Pt species in the Pt/CeO_(2)-TiO_(2)catalysts would promote the catalytic activity of VOCs oxidation with low T90% values(1000 ppm, GHSV = 15,000 h^(-1)), such as for n-hexane degradation with T90% of 139℃. The characterizations reveal that the superior activity is mainly related to possessing the more Pt2+species,adsorbed oxygen species and higher low-temperature reducibility owing to the strong interaction between highly dispersed Pt species and CeO_(2)-TiO_(2)as well as the promoted migration of lattice oxygen by the formation of more Ce_(2)Ti_(2)O_(7)species. Furthermore, the Pt/CeTi-2/1 catalyst also exhibits excellent stability for chlorinated and other non-chlorinated VOCs oxidation, making it very promising for real application under various operating conditions. 展开更多
关键词 Highly dispersed Pt species CeO_(2)–TiO_(2)mixed oxides VOCs degradation Superior activity
下载PDF
Theoretical and numerical simulation investigation of deep hole dispersed charge cut blasting
6
作者 Chengxiao Li Renshu Yang +3 位作者 Yanbing Wang Yiqiang Kang Yuantong Zhang Pin Xie 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期87-107,共21页
Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ... Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways. 展开更多
关键词 Deep hole blasting Cut blasting dispersed charge SPH-FEM Digital electronic detonator
下载PDF
A Dynamic Bayesian-Based Comprehensive Trust Evaluation Model for Dispersed Computing Environment
7
作者 Hongwen Hui Zhengxia Gong +1 位作者 Jianwei An Jianzhong Qi 《China Communications》 SCIE CSCD 2023年第2期278-288,共11页
Dispersed computing is a new resourcecentric computing paradigm.Due to its high degree of openness and decentralization,it is vulnerable to attacks,and security issues have become an important challenge hindering its ... Dispersed computing is a new resourcecentric computing paradigm.Due to its high degree of openness and decentralization,it is vulnerable to attacks,and security issues have become an important challenge hindering its development.The trust evaluation technology is of great significance to the reliable operation and security assurance of dispersed computing networks.In this paper,a dynamic Bayesian-based comprehensive trust evaluation model is proposed for dispersed computing environment.Specifically,in the calculation of direct trust,a logarithmic decay function and a sliding window are introduced to improve the timeliness.In the calculation of indirect trust,a random screening method based on sine function is designed,which excludes malicious nodes providing false reports and multiple malicious nodes colluding attacks.Finally,the comprehensive trust value is dynamically updated based on historical interactions,current interactions and momentary changes.Simulation experiments are introduced to verify the performance of the model.Compared with existing model,the proposed trust evaluation model performs better in terms of the detection rate of malicious nodes,the interaction success rate,and the computational cost. 展开更多
关键词 dispersed computing trust evaluation model malicious node interaction success rate detection rate
下载PDF
Well-Dispersed Graphene Enhanced Lithium Complex Grease Toward High-Efcient Lubrication
8
作者 Kaiyue Lin Zhuang Zhao +4 位作者 Yuting Li Zihan Zeng Xiaofeng Wei Xiaoqiang Fan Minhao Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期341-352,共12页
Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphe... Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphene dispersion on the thickening efect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modifed graphene ([P_(66614)][DEHP]-G). Then lithium complex grease was prepared by saponifcation with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefn (PAO20) as base oil and the modifed-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modifed-graphene lithium complex grease ofered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefcient and wear volume up to 18.84% and 67.34%, respectively. With base oil overfow and afux, well-dispersed [P_(66614)][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition flm. The synergy of deposited graphene-flm, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery. 展开更多
关键词 Graphene additive Lithium complex grease DISPERSION Tribological properties
下载PDF
Degradable Foam Tray Based on High-concentration Dispersed Cellulose Fibers Obtained by a Hot-press Baking Process
9
作者 Ruijuan Zhang Yanqun Su +5 位作者 Tao Zhao Jingang Liu Hongjie Zhang Leilei Hou Xianling Fu Qi Chen 《Paper And Biomaterials》 CAS 2023年第4期20-26,共7页
Degradable industrial packaging foam trays made from cellulose fibers were fabricated using a hot-press baking process.Bleached softwood pulp fibers with a concentration of 30%were dispersed at a high speed under the ... Degradable industrial packaging foam trays made from cellulose fibers were fabricated using a hot-press baking process.Bleached softwood pulp fibers with a concentration of 30%were dispersed at a high speed under the action of a dispersant.The effects of the dispersant dosage of the fibers on the porosity,foam density,and static compression characteristics were discussed.Furthermore,the effects of the reinforcing adhesive including polyvinyl alcohol(PVA),and cassava starch on the physical and mechanical properties of the foam trays were studied,as well as the relationship between these properties and the microstructure of the foam trays.The dispersant enhanced the rheological and blistering properties of the fiber dispersion.As the dispersant dosage increased from 2%to 4%,the foam density gradually increased and the compressive strain performance and residual compressive strain of the foam trays decreased.Under the condition of constant dosage of dispersant,increasing the fiber proportion from 67%to 77%improved the porosity and foam density and slightly reduced the static compression performance.In additioton,the static compression resistance of the foamed materials was improved by increasing the PVA dosage since PVA was beneficial for improving the strength of the foam trays. 展开更多
关键词 degradable foam cellulose fiber dispersion cassava starch polyvinyl alcohol
下载PDF
Tuning Atomically Dispersed Fe Sites in Metal–Organic Frameworks Boosts Peroxidase‑Like Activity for Sensitive Biosensing 被引量:4
10
作者 Weiqing Xu Yikun Kang +6 位作者 Lei Jiao Yu Wu Hongye Yan Jinli Li Wenling Gu Weiyu Song Chengzhou Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期392-403,共12页
Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still ... Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges.Herein,two functional groups with opposite electron modulation abilities(nitro and amino)were introduced into the metal–organic frameworks(MIL-101(Fe))to tune the atomically dispersed metal sites and thus regulate the enzymelike activity.Notably,the functionalization of nitro can enhance the peroxidase(POD)-like activity of MIL-101(Fe),while the amino is poles apart.Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites.Benefiting from both geometric and electronic effects,the nitro-functionalized MIL-101(Fe)with a low reaction energy barrier for the HO*formation exhibits a superior POD-like activity.As a concept of the application,a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1.Moreover,the detection of organophosphorus pesticides was also achieved.This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors. 展开更多
关键词 Nanozymes Metal–organic frameworks Atomically dispersed sites Peroxidase-like activity Biosensors
下载PDF
Corrosion resistance evaluation of highly dispersed MgO–MgAl2O4–ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns 被引量:2
11
作者 Yi-nan Shen Yi Xing +4 位作者 Peng Jiang Yong Li Wen-dong Xue Guo-xiang Yin Xue-qin Hong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期1038-1046,共9页
The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhi... The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite. 展开更多
关键词 HIGHLY dispersed MgO-MgAl2O4-ZrO2 COMPOSITE material RH refining chrome-free REFRACTORY slag corrosion resistance
下载PDF
New Dispersed Phase of Electrorheological Fluids:TiO_2 Coating Graphite Particles 被引量:2
12
作者 Sujuan XU+ and Biao WANG (Harbin Institute of Technology, Harbin 150001, China) Shouqiang MEN and Kunquan LU (Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期529-530,共2页
We have prepared novel coated particles, with a conductor graphite core and a dielectric TiO2 coating, as the dispersed phase of electrorheological fluids. One order of magnitude enhancement in the shear stress is obt... We have prepared novel coated particles, with a conductor graphite core and a dielectric TiO2 coating, as the dispersed phase of electrorheological fluids. One order of magnitude enhancement in the shear stress is obtained by using such composite particles, when it is compared with that of TiO2 particles. The experimental results show a way to get excellent ER system. 展开更多
关键词 New dispersed Phase of Electrorheological Fluids GRAPHITE TIO
下载PDF
Influence of nano-scaled dispersed second phase on substructure of deformed dispersion strengthened copper alloy 被引量:2
13
作者 CHENG Jian-yi WANG Ming-pu CAO Jian-guo ZHAO Xue-long GUO Ming-xing 《Journal of Central South University of Technology》 2005年第z1期50-53,共4页
The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an ... The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2 O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree. 展开更多
关键词 dispersed phase PARTICLE DISPERSION STRENGTHENED copper alloy DEFORMATION SUBSTRUCTURE
下载PDF
DISPERSED PHASE HOLDUP AND DROP SIZE DISTRIBUTION IN A ROTATING PERFORATED DISK CONTACTOR 被引量:1
14
作者 冯毓如 裘元焘 时钧 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1991年第1期28-37,共10页
Hydrodynamic characteristics of rotating perforated disk contactor(RPDC)were studied with emulsionwater system.The emulsion was dispcrsed in water and its holdup was measured.The effects of columndimensions and operat... Hydrodynamic characteristics of rotating perforated disk contactor(RPDC)were studied with emulsionwater system.The emulsion was dispcrsed in water and its holdup was measured.The effects of columndimensions and operating conditions on holdup and characteristic velocity were studied.By using the methodof dimensional analysis,the authors obtained two experimental correlations for estimating holdup and characteristic velocity respectively.Drop size distribution was studied photographically.The experimental results showedthat drop size distribuiion could be described by upper-limit log-normal distribution. 展开更多
关键词 ROTATING estimating EMULSION umber rotor dispersed PHOTOGRAPH eliminate DISTR dimensions
下载PDF
Effects of Dispersed Mo-Fe Catalysts on Catalytic Hydrothermal Conversion of Residue 被引量:2
15
作者 Tao Mengying Hou Huandi +1 位作者 Dong Ming Xu Ke 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第4期58-64,共7页
Replacement of precious single metal catalysts with cost-effective,highly-dispersed composite catalysts for catalytic hydrothermal conversion of residue holds tremendous promise for the residue upgrading technologies.... Replacement of precious single metal catalysts with cost-effective,highly-dispersed composite catalysts for catalytic hydrothermal conversion of residue holds tremendous promise for the residue upgrading technologies.Organic metals were added to the feed as the oil-soluble precursors,and were transformed into the catalytic active phases in this work.Physical properties and structures of the composite catalysts had been investigated by X-ray fluorescence spectroscopy,X-ray photoelectron spectroscopy,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The composite catalysts were found to be highly efficient in the catalytic hydrothermal conversion of both the model compound and the residue.Increased metal dispersion and synergistic effects of two metals played indispensable roles in such catalytic system.Results showed that under the test conditions specified in the article,the catalyst had the best catalytic performance when the mass ratio of molybdenum to iron was 1.5. 展开更多
关键词 dispersed Mo-Fe catalysts catalytic hydrothermal conversion of residue catalyst characterization catalytic activity evaluation
下载PDF
Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries:Recent Advances and Future Perspectives 被引量:1
16
作者 Fang Dong Mingjie Wu +4 位作者 Zhangsen Chen Xianhu Liu Gaixia Zhang Jinli Qiao Shuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期257-281,共25页
Rechargeable zinc-air batteries(ZABs)are currently receiving extensive attention because of their extremely high theoretical specific energy density,low manufacturing costs,and environmental friendliness.Exploring bif... Rechargeable zinc-air batteries(ZABs)are currently receiving extensive attention because of their extremely high theoretical specific energy density,low manufacturing costs,and environmental friendliness.Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs.Atomically dispersed metal-nitrogen-carbon(M-N-C)catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis.In this work,general principles for designing atomically dispersed M-N-C are reviewed.Then,strategies aiming at enhancing the bifunctional catalytic activity and stability are presented.Finally,the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined.It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs. 展开更多
关键词 Atomically dispersed metal-nitrogen-carbon Oxygen evolution reaction(OER) Oxygen reduction reaction(ORR) Bifunctional oxygen electrocatalysts Zinc-air batteries(ZABs)
下载PDF
Investigation on Dispersed Catalyst for Slurry Bed Hydroprocessing of Heavy Oil 被引量:1
17
作者 Liu Dong1 Guo Aijun1 +1 位作者 Ma Kuiju2 Que Guohe1 (1 State Key Laboratory for Heavy Oil Processing, China University of Petroleum, Dongying 257061 2 CNOOC Oil Base-Oilfield Technology Services Co., Tanggu, Tianjing 300452) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2006年第4期55-59,共5页
The slurry-bed hydrocracking of Karamay VGO with water-soluble dispersed catalyst was studied and the catalyst after being separated from the reaction products was analyzed by using LRS, XRD and XPS to identify the cr... The slurry-bed hydrocracking of Karamay VGO with water-soluble dispersed catalyst was studied and the catalyst after being separated from the reaction products was analyzed by using LRS, XRD and XPS to identify the crystal structure of the catalyst. In this paper, the catalytic functions of molybdenum, nickel and iron were studied respectively during the slurry-phase hydrocracking while using diphenylmethane as the model compound and VGO from Karamay crude as the feedstock. The test results showed that, during the slurry-phase hydrocracking of heavy oil, the metal sulfides entered into chemical reactions with the free- radical intermediate H·formed on the catalyst surface. The free-radical intermediate H· formed on the catalyst surface could react with the free-radicals of big molecules and could suppress coke deposition. 展开更多
关键词 slurry-bed dispersed HYDROCRACKING
下载PDF
Highly Dispersed Cu-Base Catalyst Derived from Layered Double Hydroxides for CO Hydrogenation 被引量:1
18
作者 Xinyou Han Kegong Fang +1 位作者 Minggui Lin Yuhan Sun 《Journal of Materials Science and Chemical Engineering》 2014年第6期1-3,共3页
Highly dispersed Cu-base catalyst has been prepared via thermal decomposition of layered double hydroxides precursors. The XRD pattern and the HRTEM images of the as prepared catalyst confirmed the high dispersion of ... Highly dispersed Cu-base catalyst has been prepared via thermal decomposition of layered double hydroxides precursors. The XRD pattern and the HRTEM images of the as prepared catalyst confirmed the high dispersion of Cu and Fe ions. Results show that the catalyst has a relatively high selectivity of alkanes at low temperature. 展开更多
关键词 HIGHLY dispersed LDHS CO HYDROGENATION CU BASE
下载PDF
Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system 被引量:1
19
作者 ZHAO Guang DAI Caili YOU Qing 《Petroleum Exploration and Development》 2018年第3期481-490,共10页
Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency... Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency. The characteristics and displacement mechanisms of the system were investigated via core flow tests and visual simulation experiments. The SHC flooding system composed of DPG particles and surfactants was suitable for the reservoirs with the temperature of 80-110 °C and the salinity of 1×10~4-10×10~4 mg/L. The system presented good characteristics: low viscosity, weak negatively charged, temperature and salinity resistance, particles aggregation capacity, wettability alteration on oil wet surface, wettability weaken on water wet surface, and interfacial tension(IFT) still less than 1×10^(-1) mN/m after aging at high temperature. The SHC flooding system achieved the micro-profile control by entering formations deeply and the better performance was found in the formation with the higher permeability difference existing between the layers, which suggested that the flooding system was superior to the surfactants, DPG particles, and polymer/surfactant compound flooding systems. The system could effectively enhance the micro-profile control in porous media through four behaviors, including direct plugging, bridging, adsorption, and retention. Moreover, the surfactant in the system magnified the deep migration capability and oil displacement capacity of the SHC flooding system, and the impact was strengthened through the mechanisms of improved displacement capacity, synergistic emulsification, enhanced wettability alteration ability and coalescence of oil belts. The synergistic effect of the two components of SHC flooding system improved oil displacement efficiency and subsequently enhanced oil recovery. 展开更多
关键词 SOFT HETEROGENEOUS COMPOUND flooding dispersed PARTICLE GEL surfactant synergistic effect DISPLACEMENT mechanism high temperature and high salinity reservoirs
下载PDF
Effect of BaTiO<sub>3</sub>Nanoparticle on Electro-Optical Properties of Polymer Dispersed Liquid Crystal Displays 被引量:1
20
作者 Mallikharjuna Rao Darla Sriharsha Hegde Soney Varghese 《Journal of Crystallization Process and Technology》 2014年第1期60-63,共4页
Ferro nematic suspensions are the prominent materials to enhance the electro optical performance of liquid crystal displays. Electro optical properties of polymer dispersed liquid crystal (PDLC) display with the intro... Ferro nematic suspensions are the prominent materials to enhance the electro optical performance of liquid crystal displays. Electro optical properties of polymer dispersed liquid crystal (PDLC) display with the introduction of Barium Titanate nanoparticles have been investigated in this article and it is shown that there is a considerable enhancement in electro-optical response of the displays. The nanoparticles lower the switch-on electric field and thereby increase the optical transmission at certain voltages of the displays. The electro-optical characteristics of the PDLC cells were investigated with a He-Ne laser followed by MatLab calculations. 展开更多
关键词 Polymer dispersed LIQUID CRYSTAL Barium TITANATE LIQUID CRYSTAL
下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部