Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations of...Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations ofδ13CDIC of the GP well group produced in multi-layer commingled manner were analyzed,and the relationship between the value ofδ13CDIC and CBM productivity was examined.The produced water samples of typical wells in the GP well group were amplified and sequenced using 16S rDNA,and a geological response model ofδ13CDIC in produced water from CBM wells with multi-coal seams was put forward.The research shows that:δ13CDIC in produced water from medium-rank coal seams commonly show positive anomalies,the produced water contains more than 15 species of methanogens,and Methanobacterium is the dominant genus.The dominant methanogens sequence numbers in the produced water are positively correlated withδ13CDIC,and the positive anomaly of v is caused by reduction of methanogens,and especially hydrogenotrophic methanogens.Vertical segmentation of sedimentary facies and lithology in stratum with multi-coal seams will result in permeability and water cut segmentation,which will lead to the segmentation ofδ13CDIC and archaea community in produced water,so in the strata with better permeability and high water cut,theδ13CDIC of the produced water is abnormally enriched,and the dominant archaea is mainly Methanobacterium.In the strata with weak permeability and low water cut,theδ13CDIC of the produced water is small,and the microbial action is weak.The shallow layer close to the coal seam outcrop is likely to be affected by meteoric precipitation,so theδ13CDIC of the produced water is smaller.The geological response model ofδ13CDIC in produced water from multi-coal seams CBM wells in the medium-rank coal reveals the geological mechanism and microbial action mechanism of theδ13CDIC difference in the produced water from the multi-coal seams CBM wells.It also provides effective geochemical evidence for the superimposed fluid system controlled by sedimentary facies,and can also be used for the contribution analysis of the produced gas and water by the multi-layer CBM wells.展开更多
To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Do...To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Dongxiguan, Caojie) were collected in January and July,2016. The major cations, anions, and δ^(13)C_(DIC) values were analyzed. It was found that the dissolved compositions are dominated by carbonate weathering, while sulfuric acids may play a relatively important role during carbonate weathering and increasing DIC concentration. Different reservoirs had variable characteristics of water physiochemical stratification. The DIC concentrations of reservoir water were lower in summer than those in winter due to the dilute effects and intensive aquatic photosynthesis, as well as imported tributaries. The δ^(13)C_(DIC) values in Tingzikou Reservoir were higher during summer than those in winter,which indicated that intensive photosynthesis increased the δ^(13)C_(DIC) values in residual water, but a similar trend was not obvious in other reservoirs. Except for in Xinzheng Reservoir, the δ^(13)C_(DIC) values in inflow and outflow reservoir water were lower than those in the surface water of stratified sampling in summer. For stratified sampling, it could be found that, in summer, the Tingzikou Reservoir δ^(13)C_(DIC) values significantly decreased with water depthdue to the anaerobic breakdown of organic matter. The significant correlation(p<0.01 or 0.05) between the DIC concentrations, the δ^(13)C_(DIC) values and anthropogenic species(Na^++K^+, Cl~–, SO_4^(2-) and NO_3^-) showed that the isotope composition of DIC can be a useful tracer of contaminants. In total, Tingzikou Reservoir showed lacustrine features, Xinzheng Reservoir and Dongxiguan Reservoir had "transitional'' features, and Caojie Reservoir had a total of "fluvial'' features. Generally, cascade reservoirs in the Jialing River exhibited natural river features rather than typical lake features due to characteristics of reservoir water in physiochemical stratification, spatiotemporal variations of DIC concentrations and isotopic compositions. It is evident that the dissolved inorganic carbon dynamics of natural rivers had been partly remolded by dam building.展开更多
The isotopic composition of dissolved inorganic carbon(DIC) in estuarine environments has been studied for its significant role in determining the isotopic composition of inorganic/organic matter and its applications ...The isotopic composition of dissolved inorganic carbon(DIC) in estuarine environments has been studied for its significant role in determining the isotopic composition of inorganic/organic matter and its applications to the study of various natural processes. In this paper, based on the stable isotope geochemical characteristics of dissolved inorganic carbon in the Jiulong River Estuary, the following conclusions are drawn:(1) δ13CDIC values are mainly controlled by the mixing ratio of fresh water and sea water;(2) δ13Cphytoplankton values are linearly related to the δ13CDIC values;(3) δ13CPOM values for the Jiulong River Estuary are affected by anthropogenic pollution significantly; and(4) the comprehensive analysis of δ13Cphytoplankton, δ13CPOM and δ13CDIC shows that along with increasing salinity, the proportion of POM derived from the degradation of phytoplanktons gradually increases.展开更多
To explore variation of dissolved inorganic carbon content( DIC) caused by cyanobacterial blooms and provide a basis for formulating effective preventive and control measures of cyanobacterial blooms,the concentration...To explore variation of dissolved inorganic carbon content( DIC) caused by cyanobacterial blooms and provide a basis for formulating effective preventive and control measures of cyanobacterial blooms,the concentration of inorganic carbon and the concentration of planktonic algae were studied by sampling method,and the distribution and variation of the DIC and physicochemical factors in the ecological restoration area of Fubao Bay of Dianchi Lake were analyzed. Results indicated that the distribution of chlorophyll-a was significantly positive correlated with CO_3^(2-)( P < 0. 01) and pH values( P < 0. 05); and the distribution of chlorophyll-a was significantly negative correlated with CO_2( P <0. 01),DIC and HCO_3^-( P < 0. 05). In conclusion,the outbreak and extinction of cyanobacterial blooms is one of the important reasons for the variation of inorganic carbon form and concentration.展开更多
In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic an...In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic anhydrase (CA) was assayed in different pH, CO 2 and DIC concentrations. Extracellular CA in Amphidinium carterae and Prorocentrum minimum was detected under carbon-replete conditions, while in Melosira sp., Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira rotula, Emiliania huxleyi and Pleurochrysis carterae, CA activity was assayed under conditions of carbon limitation. No CA activity was found even under carbon-limited conditions in Chaetoceros compressus, Glenodinium foliaceum, Coccolithus pelagicus, Gephrocapsa oceanica and Heterosigma akashiwo. In species without extracellular CA activity, the direct HCO - 3 uptake was investigated using a pH drift technique and the anion exchange inhibitor 4′4′-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) in a closed system. The result showed that direct HCO - 3 transport might occur by an anion exchange mechanism in species Coc. pelagicus and G. oceanica. Of the 13 species investigated, only H. akashiwo did not have the potential for direct uptake or extracellular CA-catalyzed HCO - 3 utilization.展开更多
The eutrophication, hypoxia and coastal acidification are attracting more and more attention. In this study, inorganic carbon parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA) and calcu...The eutrophication, hypoxia and coastal acidification are attracting more and more attention. In this study, inorganic carbon parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA) and calculated partial pressure of CO2 (pCO2), obtained from a summer cruise in August, 2009, were used to investigate their integrated response to biological processes accompanying the oxygen depletion in the areas off the Changjiang Estuary. According to the observations, the typical hypoxia occurred in the bottom water just outside the Changjiang Estuary with Dissolved Oxygen (DO) lower than 2.00 mg L^-1. The biological uptake in the surface water and the decomposition of organic matter in the bottom water were fully coupled with each other. The high concentration of Chl_a (Chl_a = 10.9μgL^-1) and DO (9.25 mgL^-1), profoundly decreased DIC concentration 0828 μmolkg^-1) and elevated pH (8.42) was observed in the surface water. The correspondingly increased DIC and depletion of oxygen were observed in the bottom water. The semi-quantitative analysis proved that the locally-produced phytoplankton, determined by primary productivity, was deposited to the bottom and contributed about 76% of total amount of the organic carbon decomposition in the bottom. However, in the bottom hypoxia (DO = 2.05 mgL^-1) area observed in the Southern Zhejiang coastal water, the responding patterns of inorganic carbon parameters deviated from the previous one. The expanding of Changjiang Diluted Water (CDW), the adding of Hangzhou Bay water (with high DIC concentration) and Coastal Current together modify the DIC background value in this area, and the local degeneration and upwelling process may also help to offset the local DIC removed by net biological uptake in surface water. In addition when the mixing occurring in autumn, which may break the summer stratification, the excess release of high DIC in the bottom water to the subsurface water could have an important influence on coastal acidification and the CO2 uptake capacity in this area.展开更多
An investigation was carried out in the Y3 seamount area of the Western Pacific Ocean in December 2014,and the distribution of dissolved inorganic carbon(DIC)and its relationship with environmental factors in this are...An investigation was carried out in the Y3 seamount area of the Western Pacific Ocean in December 2014,and the distribution of dissolved inorganic carbon(DIC)and its relationship with environmental factors in this area were explored.The results show that DIC concentration was higher in the adjacent waters of the Y3 seamount area,and the uplift of DIC isolines at the stations was close to the seamount.Meanwhile,interaction between the North Equatorial Current(NEC)and the Y3 seamount affected the DIC distribution,i.e.,the upwelling in the same direction of the NEC was obvious,resulting in a decreasing trend of average concentration of DIC in the 200 m water column from the top to the two sides in this direction but in the cross direction.The DIC concentration increased with the water depth increase,and its distribution was affected by various environmental factors.In the surface water,high temperature was a decisive factor for the decrease of the DIC concentration,but the photosynthesis of phytoplankton showing only a weak influence.In the North Pacific Tropic Water(NPTW),DIC production rate from organic matter decomposition was higher than that of DIC consumption by phytoplankton photosynthesis,leading to a continual increase of DIC.In the North Pacific Intermediate Water(NPIW),organic matter decomposition played a leading role in the increase of DIC.In the deep water,decomposition of organic matter weakened,and the dissolution of CaCO3 controlled the carbonate system,and DIC had the smallest variation range.展开更多
The complete analytical procedure using coulometric titration to determine dissolved inorganic carbon (DIC) in seawater consists of studying the setup of the coulometric titration, the solution composition of the coul...The complete analytical procedure using coulometric titration to determine dissolved inorganic carbon (DIC) in seawater consists of studying the setup of the coulometric titration, the solution composition of the coulometer cell. conrrectly judging the titration end-point, and establishing(and evaluating the accuracy of) the DIC determination system.展开更多
基金Supported by the National Natural Science Foundation of China(41772155)the National Science and Technology Major Project of China(2016ZX05044-002)
文摘Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations ofδ13CDIC of the GP well group produced in multi-layer commingled manner were analyzed,and the relationship between the value ofδ13CDIC and CBM productivity was examined.The produced water samples of typical wells in the GP well group were amplified and sequenced using 16S rDNA,and a geological response model ofδ13CDIC in produced water from CBM wells with multi-coal seams was put forward.The research shows that:δ13CDIC in produced water from medium-rank coal seams commonly show positive anomalies,the produced water contains more than 15 species of methanogens,and Methanobacterium is the dominant genus.The dominant methanogens sequence numbers in the produced water are positively correlated withδ13CDIC,and the positive anomaly of v is caused by reduction of methanogens,and especially hydrogenotrophic methanogens.Vertical segmentation of sedimentary facies and lithology in stratum with multi-coal seams will result in permeability and water cut segmentation,which will lead to the segmentation ofδ13CDIC and archaea community in produced water,so in the strata with better permeability and high water cut,theδ13CDIC of the produced water is abnormally enriched,and the dominant archaea is mainly Methanobacterium.In the strata with weak permeability and low water cut,theδ13CDIC of the produced water is small,and the microbial action is weak.The shallow layer close to the coal seam outcrop is likely to be affected by meteoric precipitation,so theδ13CDIC of the produced water is smaller.The geological response model ofδ13CDIC in produced water from multi-coal seams CBM wells in the medium-rank coal reveals the geological mechanism and microbial action mechanism of theδ13CDIC difference in the produced water from the multi-coal seams CBM wells.It also provides effective geochemical evidence for the superimposed fluid system controlled by sedimentary facies,and can also be used for the contribution analysis of the produced gas and water by the multi-layer CBM wells.
基金financially supported by the National Key Research and Development Program of China(2016YFA0601000)the National Natural Science Foundation of China(Grant No.41373136)
文摘To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Dongxiguan, Caojie) were collected in January and July,2016. The major cations, anions, and δ^(13)C_(DIC) values were analyzed. It was found that the dissolved compositions are dominated by carbonate weathering, while sulfuric acids may play a relatively important role during carbonate weathering and increasing DIC concentration. Different reservoirs had variable characteristics of water physiochemical stratification. The DIC concentrations of reservoir water were lower in summer than those in winter due to the dilute effects and intensive aquatic photosynthesis, as well as imported tributaries. The δ^(13)C_(DIC) values in Tingzikou Reservoir were higher during summer than those in winter,which indicated that intensive photosynthesis increased the δ^(13)C_(DIC) values in residual water, but a similar trend was not obvious in other reservoirs. Except for in Xinzheng Reservoir, the δ^(13)C_(DIC) values in inflow and outflow reservoir water were lower than those in the surface water of stratified sampling in summer. For stratified sampling, it could be found that, in summer, the Tingzikou Reservoir δ^(13)C_(DIC) values significantly decreased with water depthdue to the anaerobic breakdown of organic matter. The significant correlation(p<0.01 or 0.05) between the DIC concentrations, the δ^(13)C_(DIC) values and anthropogenic species(Na^++K^+, Cl~–, SO_4^(2-) and NO_3^-) showed that the isotope composition of DIC can be a useful tracer of contaminants. In total, Tingzikou Reservoir showed lacustrine features, Xinzheng Reservoir and Dongxiguan Reservoir had "transitional'' features, and Caojie Reservoir had a total of "fluvial'' features. Generally, cascade reservoirs in the Jialing River exhibited natural river features rather than typical lake features due to characteristics of reservoir water in physiochemical stratification, spatiotemporal variations of DIC concentrations and isotopic compositions. It is evident that the dissolved inorganic carbon dynamics of natural rivers had been partly remolded by dam building.
基金financially supported jointly by the National Natural Science Foundation of China(Grant Nos.40771185 and 51004053)the Fujian Province Natural Science Foundation(D0710021)the Li Shangda Scientific Research Foundation of Jimei University,China(No.ZC2011015)
文摘The isotopic composition of dissolved inorganic carbon(DIC) in estuarine environments has been studied for its significant role in determining the isotopic composition of inorganic/organic matter and its applications to the study of various natural processes. In this paper, based on the stable isotope geochemical characteristics of dissolved inorganic carbon in the Jiulong River Estuary, the following conclusions are drawn:(1) δ13CDIC values are mainly controlled by the mixing ratio of fresh water and sea water;(2) δ13Cphytoplankton values are linearly related to the δ13CDIC values;(3) δ13CPOM values for the Jiulong River Estuary are affected by anthropogenic pollution significantly; and(4) the comprehensive analysis of δ13Cphytoplankton, δ13CPOM and δ13CDIC shows that along with increasing salinity, the proportion of POM derived from the degradation of phytoplanktons gradually increases.
基金Supported by the National Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07103-003 and 2012ZX07103-004)
文摘To explore variation of dissolved inorganic carbon content( DIC) caused by cyanobacterial blooms and provide a basis for formulating effective preventive and control measures of cyanobacterial blooms,the concentration of inorganic carbon and the concentration of planktonic algae were studied by sampling method,and the distribution and variation of the DIC and physicochemical factors in the ecological restoration area of Fubao Bay of Dianchi Lake were analyzed. Results indicated that the distribution of chlorophyll-a was significantly positive correlated with CO_3^(2-)( P < 0. 01) and pH values( P < 0. 05); and the distribution of chlorophyll-a was significantly negative correlated with CO_2( P <0. 01),DIC and HCO_3^-( P < 0. 05). In conclusion,the outbreak and extinction of cyanobacterial blooms is one of the important reasons for the variation of inorganic carbon form and concentration.
文摘In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic anhydrase (CA) was assayed in different pH, CO 2 and DIC concentrations. Extracellular CA in Amphidinium carterae and Prorocentrum minimum was detected under carbon-replete conditions, while in Melosira sp., Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira rotula, Emiliania huxleyi and Pleurochrysis carterae, CA activity was assayed under conditions of carbon limitation. No CA activity was found even under carbon-limited conditions in Chaetoceros compressus, Glenodinium foliaceum, Coccolithus pelagicus, Gephrocapsa oceanica and Heterosigma akashiwo. In species without extracellular CA activity, the direct HCO - 3 uptake was investigated using a pH drift technique and the anion exchange inhibitor 4′4′-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) in a closed system. The result showed that direct HCO - 3 transport might occur by an anion exchange mechanism in species Coc. pelagicus and G. oceanica. Of the 13 species investigated, only H. akashiwo did not have the potential for direct uptake or extracellular CA-catalyzed HCO - 3 utilization.
基金supported by the National Basic Research Program of China(973 program,No.2010CB428903)Public Science and Technology Research Funds the Projects of Ocean(No.201105014)+1 种基金National Natural Science Foundation of China(No.41203085)the Fundamental Research Funds for the Second Institute of Oceanography,SOA(JT0906)
文摘The eutrophication, hypoxia and coastal acidification are attracting more and more attention. In this study, inorganic carbon parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA) and calculated partial pressure of CO2 (pCO2), obtained from a summer cruise in August, 2009, were used to investigate their integrated response to biological processes accompanying the oxygen depletion in the areas off the Changjiang Estuary. According to the observations, the typical hypoxia occurred in the bottom water just outside the Changjiang Estuary with Dissolved Oxygen (DO) lower than 2.00 mg L^-1. The biological uptake in the surface water and the decomposition of organic matter in the bottom water were fully coupled with each other. The high concentration of Chl_a (Chl_a = 10.9μgL^-1) and DO (9.25 mgL^-1), profoundly decreased DIC concentration 0828 μmolkg^-1) and elevated pH (8.42) was observed in the surface water. The correspondingly increased DIC and depletion of oxygen were observed in the bottom water. The semi-quantitative analysis proved that the locally-produced phytoplankton, determined by primary productivity, was deposited to the bottom and contributed about 76% of total amount of the organic carbon decomposition in the bottom. However, in the bottom hypoxia (DO = 2.05 mgL^-1) area observed in the Southern Zhejiang coastal water, the responding patterns of inorganic carbon parameters deviated from the previous one. The expanding of Changjiang Diluted Water (CDW), the adding of Hangzhou Bay water (with high DIC concentration) and Coastal Current together modify the DIC background value in this area, and the local degeneration and upwelling process may also help to offset the local DIC removed by net biological uptake in surface water. In addition when the mixing occurring in autumn, which may break the summer stratification, the excess release of high DIC in the bottom water to the subsurface water could have an important influence on coastal acidification and the CO2 uptake capacity in this area.
基金the Science&Technology Basic Resources Investigation Program of China(No.2017TY100802)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060401)the National Natural Science Foundation of China(No.91958103)。
文摘An investigation was carried out in the Y3 seamount area of the Western Pacific Ocean in December 2014,and the distribution of dissolved inorganic carbon(DIC)and its relationship with environmental factors in this area were explored.The results show that DIC concentration was higher in the adjacent waters of the Y3 seamount area,and the uplift of DIC isolines at the stations was close to the seamount.Meanwhile,interaction between the North Equatorial Current(NEC)and the Y3 seamount affected the DIC distribution,i.e.,the upwelling in the same direction of the NEC was obvious,resulting in a decreasing trend of average concentration of DIC in the 200 m water column from the top to the two sides in this direction but in the cross direction.The DIC concentration increased with the water depth increase,and its distribution was affected by various environmental factors.In the surface water,high temperature was a decisive factor for the decrease of the DIC concentration,but the photosynthesis of phytoplankton showing only a weak influence.In the North Pacific Tropic Water(NPTW),DIC production rate from organic matter decomposition was higher than that of DIC consumption by phytoplankton photosynthesis,leading to a continual increase of DIC.In the North Pacific Intermediate Water(NPIW),organic matter decomposition played a leading role in the increase of DIC.In the deep water,decomposition of organic matter weakened,and the dissolution of CaCO3 controlled the carbonate system,and DIC had the smallest variation range.
文摘The complete analytical procedure using coulometric titration to determine dissolved inorganic carbon (DIC) in seawater consists of studying the setup of the coulometric titration, the solution composition of the coulometer cell. conrrectly judging the titration end-point, and establishing(and evaluating the accuracy of) the DIC determination system.