Coverage holes often appear in wireless sensor networks due to sensor failure or the inheritance of sensor's random distribution. In the hybrid model, mobile sensors in the network are acquired to heal coverage holes...Coverage holes often appear in wireless sensor networks due to sensor failure or the inheritance of sensor's random distribution. In the hybrid model, mobile sensors in the network are acquired to heal coverage holes by their mobifity. When multiple coverage holes appear in the sensor network and each of them has a time requirement (in which the coverage hole has to be healed), conflicts for the requests of the same mobile sensor may arise. A distributed multiple mobile sensor schedufing protocol (DMS) is proposed in this paper to solve this problem by finding mobile sensors in the time response zone defined by the time requirement of each coverage hole. Simulation results show that DMS can well schedule the mobile sensors to move to multiple coverage holes within the time requirement.展开更多
Quantum key distribution(QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes ...Quantum key distribution(QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes feasible and economical to combine QKD with classical optical communication through the same fiber using dense wavelength division multiplexing(DWDM) technology. This study proposes a detailed scheme of TF-QKD protocol with DWDM technology and analyzes its performance, considering the influence of quantum channel number and adjacent quantum crosstalk on the secret key rates. The simulation results show that the scheme further increases the secret key rate of TF-QKD and its variants. Therefore, this scheme provides a method for improving the secret key rate for practical quantum networks.展开更多
Semi-device-independent quantum key distribution (SDI-QKD) has been proposed by applying the quantum dimension correlation, and the security relies on the violation of quantum dimension witness inequalities. We prov...Semi-device-independent quantum key distribution (SDI-QKD) has been proposed by applying the quantum dimension correlation, and the security relies on the violation of quantum dimension witness inequalities. We prove the security of the SDI-QKD protocol under the depolarization channel by considering the quantum dimension witness inequalities and minimum entropy and the specific process of the QKD protocol, combining with a four- quantum-state preparation and three measurement bases. We also provide the relationship between the dimension witness value, the error rate and the security key rate by the numerical simulation.展开更多
This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way ...This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.展开更多
Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchro...Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchronize tremendous machines in a timing-efficient brings one of the greatest challenge and serves as the foundation for any other network control policies. In this paper, we propose a linear-time synchronization protocol in large M2M networks. Specifically, a closed-form of synchronization rate is provided by developing the statistical bounds of the second smallest eigenvalue of the graph Laplacian matrix. These bounds enable the efficient control of network dynamics, facilitating the timing synchronization in networks. Through a practical study in Metropolis, simulation results confirm our theoretical analysis and provide effective selection of wireless technologies, including Zigbee, Wi-Fi, and cellular systems, with respect to the deployed density of machines. Therefore, this paper successfully demonstrates a practical timing synchronization, to make a breakthrough of network dynamic control in real-world machine systems, such as Internet of Things.展开更多
Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the dif...Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the different detection time slots ensure the security of our scheme against eavesdropping. We discuss the security under the intercept-resend attack and the source replacement attack.展开更多
Starting from centralized control model used in wavelength routed optical burst switching network, a distributed control model and correspondent wavelength resource reservation protocol are proposed in this paper. Two...Starting from centralized control model used in wavelength routed optical burst switching network, a distributed control model and correspondent wavelength resource reservation protocol are proposed in this paper. Two Quality- of-Service (QoS) methods, Based on the resourcereservation protocol, are discussed. Also, computer simulation is implemented to investigate the performance of the newly proposed reservation protocol and QoS methods. Simulation results demonstrate that the QoS methods can efficiently provide different level service quality to traffic" with different priorities. Furthermore, performances of the two QoS methods are compared concerning the QoS distinguished level, burst lost probability and implementation difficulty. It has been shown that the newly propose reservation protocol and QoS methods is a high qualified candidate for the future OBS networks.展开更多
To meet the challenges in software testing for automated vehicles,such as increasing system complexity and an infinite number of operating scenarios,new simulation methods must be developed.Closed-loop simulations for...To meet the challenges in software testing for automated vehicles,such as increasing system complexity and an infinite number of operating scenarios,new simulation methods must be developed.Closed-loop simulations for automated driving(AD)require highly complex simulation models for multiple controlled vehicles with their perception systems as well as their surrounding context.For the realization of such models,different simulation domains must be coupled with co-simulation.However,widely supported model integration standards such as functional mock-up interface(FMI)lack native support for distributed platforms,which is a key feature for AD due to the computational intensity and platform exclusivity of certain models.The newer FMI companion standard distributed co-simulation protocol(DCP)introduces platform coupling but must still be used in conjunction with AD co-simulations.As part of an assessment framework for AD,this paper presents a DCP compliant implementation of an interoperable interface between a 3D environment and vehicle simulator and a co-simulation platform.A universal Python wrapper is implemented and connected to the simulator to allow its control as a DCP slave.A C-code-based interface enables the co-simulation platform to act as a DCP master and to realize cross-platform data exchange and time synchronization of the environment simulation with other integrated models.A model-in-the-loop use case is performed with the traffic simulator CARLA running on a Linux machine connected to the co-simulation master xMOD on a Windows computer via DCP.Several virtual vehicles are successfully controlled by cooperative adaptive cruise controllers executed outside of CARLA.The standard compliance of the implementation is verified by exemplary connection to prototypic DCP solutions from 3rd party vendors.This exemplary application demonstrates the benefits of DCP compliant tool coupling for AD simulation with increased tool interoperability,reuse potential,and performance.展开更多
Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phas...Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phase-encoded Bennett-Brassard 1984 protocol(PE-BB84) to the RRDPS,this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift(RRDQPS) quantum key distribution.Regarding a train of many pulses as a single packet,the sender modulates the phase of each pulse by one of {0,π/2,π,3π/2},then the receiver measures each packet with a Mach-Zehnder interferometer having a phase basis of 0 or π/2.The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84,so it has great compatibility with the current quantum system.Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack.Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.展开更多
It has claimed that any practical way to achieve perfect reparability for key distribution protocol (KDP) could only be futile. Fortunately, this paper presents reparable KDPs for internet environments with the use of...It has claimed that any practical way to achieve perfect reparability for key distribution protocol (KDP) could only be futile. Fortunately, this paper presents reparable KDPs for internet environments with the use of the concept of timestamps.展开更多
Active replication is an effective means to enhance fault tolerant capability in distributed systems. A fault-tolerant group is composed of replicas of key components in a system. This paper analyzes three types of le...Active replication is an effective means to enhance fault tolerant capability in distributed systems. A fault-tolerant group is composed of replicas of key components in a system. This paper analyzes three types of leave semantics of group members, and manifests activities a group member involves. Then it educes requirements for a group member to safely leave. As to quick-leave semantics, this paper proposes a solution and discusses the non-empty protocol and relay protocol in detail. Further, it gives proofs of correctness and termination property of the protocols. The solution is a building block for a practical and operational group membership module.展开更多
In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(...In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61133016
文摘Coverage holes often appear in wireless sensor networks due to sensor failure or the inheritance of sensor's random distribution. In the hybrid model, mobile sensors in the network are acquired to heal coverage holes by their mobifity. When multiple coverage holes appear in the sensor network and each of them has a time requirement (in which the coverage hole has to be healed), conflicts for the requests of the same mobile sensor may arise. A distributed multiple mobile sensor schedufing protocol (DMS) is proposed in this paper to solve this problem by finding mobile sensors in the time response zone defined by the time requirement of each coverage hole. Simulation results show that DMS can well schedule the mobile sensors to move to multiple coverage holes within the time requirement.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPOC2021ZT10)the National Natural Science Foundation of China (Grant No. 11904333)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02)BUPT Innovation and Entrepreneurship Support Program (Grant No. 2022YC-T051)。
文摘Quantum key distribution(QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes feasible and economical to combine QKD with classical optical communication through the same fiber using dense wavelength division multiplexing(DWDM) technology. This study proposes a detailed scheme of TF-QKD protocol with DWDM technology and analyzes its performance, considering the influence of quantum channel number and adjacent quantum crosstalk on the secret key rates. The simulation results show that the scheme further increases the secret key rate of TF-QKD and its variants. Therefore, this scheme provides a method for improving the secret key rate for practical quantum networks.
基金Supported by the National Basic Research Program of China under Grant No 2013CB338002the National Natural Science Foundation of China under Grant Nos 11304397 and 61505261
文摘Semi-device-independent quantum key distribution (SDI-QKD) has been proposed by applying the quantum dimension correlation, and the security relies on the violation of quantum dimension witness inequalities. We prove the security of the SDI-QKD protocol under the depolarization channel by considering the quantum dimension witness inequalities and minimum entropy and the specific process of the QKD protocol, combining with a four- quantum-state preparation and three measurement bases. We also provide the relationship between the dimension witness value, the error rate and the security key rate by the numerical simulation.
基金National Natural Science Foundation of China(Nos.U22B2040 and 62233003)Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb12)。
文摘This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.
基金supported by the Major Research plan of the National Natural Science Foundation of China 9118008National Key Technology R&D Program of the Ministry of Science and Technology 2014BAC16B01
文摘Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchronize tremendous machines in a timing-efficient brings one of the greatest challenge and serves as the foundation for any other network control policies. In this paper, we propose a linear-time synchronization protocol in large M2M networks. Specifically, a closed-form of synchronization rate is provided by developing the statistical bounds of the second smallest eigenvalue of the graph Laplacian matrix. These bounds enable the efficient control of network dynamics, facilitating the timing synchronization in networks. Through a practical study in Metropolis, simulation results confirm our theoretical analysis and provide effective selection of wireless technologies, including Zigbee, Wi-Fi, and cellular systems, with respect to the deployed density of machines. Therefore, this paper successfully demonstrates a practical timing synchronization, to make a breakthrough of network dynamic control in real-world machine systems, such as Internet of Things.
基金Supported by the National Key Basic Research Programme of China under Grant No 2006CB921106, the National Natural Science Foundation of China under Grant Nos 10325521 and 60433050, and the SRFDP Programme of the Ministry of Education of China, and the Key Project of the Ministry of Education of China under Grant No 306020.
文摘Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the different detection time slots ensure the security of our scheme against eavesdropping. We discuss the security under the intercept-resend attack and the source replacement attack.
文摘Starting from centralized control model used in wavelength routed optical burst switching network, a distributed control model and correspondent wavelength resource reservation protocol are proposed in this paper. Two Quality- of-Service (QoS) methods, Based on the resourcereservation protocol, are discussed. Also, computer simulation is implemented to investigate the performance of the newly proposed reservation protocol and QoS methods. Simulation results demonstrate that the QoS methods can efficiently provide different level service quality to traffic" with different priorities. Furthermore, performances of the two QoS methods are compared concerning the QoS distinguished level, burst lost probability and implementation difficulty. It has been shown that the newly propose reservation protocol and QoS methods is a high qualified candidate for the future OBS networks.
基金Open Access funding enabled and organized by Projekt DEAL.This work was supported in part by the German Ministry of Education and Research(BMBF)under grant 01IS16043.
文摘To meet the challenges in software testing for automated vehicles,such as increasing system complexity and an infinite number of operating scenarios,new simulation methods must be developed.Closed-loop simulations for automated driving(AD)require highly complex simulation models for multiple controlled vehicles with their perception systems as well as their surrounding context.For the realization of such models,different simulation domains must be coupled with co-simulation.However,widely supported model integration standards such as functional mock-up interface(FMI)lack native support for distributed platforms,which is a key feature for AD due to the computational intensity and platform exclusivity of certain models.The newer FMI companion standard distributed co-simulation protocol(DCP)introduces platform coupling but must still be used in conjunction with AD co-simulations.As part of an assessment framework for AD,this paper presents a DCP compliant implementation of an interoperable interface between a 3D environment and vehicle simulator and a co-simulation platform.A universal Python wrapper is implemented and connected to the simulator to allow its control as a DCP slave.A C-code-based interface enables the co-simulation platform to act as a DCP master and to realize cross-platform data exchange and time synchronization of the environment simulation with other integrated models.A model-in-the-loop use case is performed with the traffic simulator CARLA running on a Linux machine connected to the co-simulation master xMOD on a Windows computer via DCP.Several virtual vehicles are successfully controlled by cooperative adaptive cruise controllers executed outside of CARLA.The standard compliance of the implementation is verified by exemplary connection to prototypic DCP solutions from 3rd party vendors.This exemplary application demonstrates the benefits of DCP compliant tool coupling for AD simulation with increased tool interoperability,reuse potential,and performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61505261 and 11304397)the National Basic Research Program of China(Grant No.2013CB338002)
文摘Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phase-encoded Bennett-Brassard 1984 protocol(PE-BB84) to the RRDPS,this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift(RRDQPS) quantum key distribution.Regarding a train of many pulses as a single packet,the sender modulates the phase of each pulse by one of {0,π/2,π,3π/2},then the receiver measures each packet with a Mach-Zehnder interferometer having a phase basis of 0 or π/2.The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84,so it has great compatibility with the current quantum system.Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack.Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.
基金This work is supported by NSFC for Outstanding Young Scientists ( No. 69425001) and National "973" (No. 1999035805)
文摘It has claimed that any practical way to achieve perfect reparability for key distribution protocol (KDP) could only be futile. Fortunately, this paper presents reparable KDPs for internet environments with the use of the concept of timestamps.
文摘Active replication is an effective means to enhance fault tolerant capability in distributed systems. A fault-tolerant group is composed of replicas of key components in a system. This paper analyzes three types of leave semantics of group members, and manifests activities a group member involves. Then it educes requirements for a group member to safely leave. As to quick-leave semantics, this paper proposes a solution and discusses the non-empty protocol and relay protocol in detail. Further, it gives proofs of correctness and termination property of the protocols. The solution is a building block for a practical and operational group membership module.
基金supported by National Natural Science Foundation of China(No.61329301)the Royal Society of the UK+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe China Postdoctoral Science Foundation(No.2016M600547)the Alexander von Humboldt Foundation of Germany
文摘In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.