Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and...Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and regulatory complexity of healthcare data. This research introduces a tailored partitioning strategy leveraging the MD5 hashing algorithm to enhance data insertion, query performance, and load balancing in healthcare systems. By applying a consistent hash function to patient IDs, our approach achieves uniform distribution of records across partitions, optimizing retrieval paths and reducing access latency while ensuring data integrity and compliance. We evaluated the method through experiments focusing on partitioning efficiency, scalability, and fault tolerance. The partitioning efficiency analysis compared our MD5-based approach with standard round-robin methods, measuring insertion times, query latency, and data distribution balance. Scalability tests assessed system performance across increasing dataset sizes and varying partition counts, while fault tolerance experiments examined data integrity and retrieval performance under simulated partition failures. The experimental results demonstrate that the MD5-based partitioning strategy significantly reduces query retrieval times by optimizing data access patterns, achieving up to X% better performance compared to round-robin methods. It also scales effectively with larger datasets, maintaining low latency and ensuring robust resilience under failure scenarios. This novel approach offers a scalable, efficient, and fault-tolerant solution for healthcare systems, facilitating faster clinical decision-making and improved patient care in complex data environments.展开更多
Blockchain has recently sparked interest in both the technological and businessfirms.The Internet of Things's(IoT)core principle emerged due to the connectivity of several new technologies,including wireless techno...Blockchain has recently sparked interest in both the technological and businessfirms.The Internet of Things's(IoT)core principle emerged due to the connectivity of several new technologies,including wireless technology,the Inter-net,embedded automation systems,and micro-electromechanical devices.Manu-facturing environments and operations have been successfully converted by implementing recent advanced technology like Cloud Computing(CC),Cyber-Physical System(CSP),Information and Communication Technologies(ICT)and Enterprise Model,and other technological innovations into the fourth indus-trial revolution referred to as Industry 4.0.Data management is defined as the pro-cess of accumulation in order to make better business decisions,and process,secure and store information about a company.In the incipient model,there are interconnected contrivances and Machine-to-Machine(M2M)interactions,and transaction data are stored on the Blockchain.Security is a challenging aspect that must be punctiliously considered during the design and development phases of a CSP.In this research article,we proposed a Secure and Distributed Framework for Resource Management(SDFRM)in Industry 4.0 environments within a distribu-ted and collaborative Industry 4.0 system,the dynamic and trust-based Distributed Management Framework(DMF)of shared resource access.Such issues are focused by taking into account of the traditional characteristics of IoT/Industrial Internet of Things’(IIoT)-predicated environments,an SDFRM in Industry 4.0 environments within a distributed and collaborative Industry 4.0 system.Also,to ensure strong privacy over the procedures associated with Access Control(AC),a privacy-preserving method is proposed and integrated into the DMF.The proposed DMF,based on blockchain technology and peer-to-peer networks,allows dynamic access management and system governance without using third parties who could be attacked.We worked hard to design and implement the pro-posal to demonstrate its viability and evaluate its performance.Our proposal out-performs the Multichain Blockchain in terms of successful storage transactions with an achieved average throughput of 98.15%.展开更多
The integration of heterogeneous multidatabases on a network is one of the key issues to be sofved in thedevelopment of CIMS (computer integrated manufacturing system). As a solution to this issue, a multidatabase int...The integration of heterogeneous multidatabases on a network is one of the key issues to be sofved in thedevelopment of CIMS (computer integrated manufacturing system). As a solution to this issue, a multidatabase integration environment, CIMBASE, has been developed. CIMBASE adopts an object-oriented data model and provides users with a series of software tools: a query language, a pre-compiler, a graphical database schema editor,a graphical query interface and a form based query generation tool.This paper discusses in detail the major aspectsof CIMBASE: its object-oriented data model, query language interpreter and the design and implementation of itsprc-compiler. The design and algorithms presented in this paper provide a solid foundation for research on multidatabase integration.展开更多
文摘Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and regulatory complexity of healthcare data. This research introduces a tailored partitioning strategy leveraging the MD5 hashing algorithm to enhance data insertion, query performance, and load balancing in healthcare systems. By applying a consistent hash function to patient IDs, our approach achieves uniform distribution of records across partitions, optimizing retrieval paths and reducing access latency while ensuring data integrity and compliance. We evaluated the method through experiments focusing on partitioning efficiency, scalability, and fault tolerance. The partitioning efficiency analysis compared our MD5-based approach with standard round-robin methods, measuring insertion times, query latency, and data distribution balance. Scalability tests assessed system performance across increasing dataset sizes and varying partition counts, while fault tolerance experiments examined data integrity and retrieval performance under simulated partition failures. The experimental results demonstrate that the MD5-based partitioning strategy significantly reduces query retrieval times by optimizing data access patterns, achieving up to X% better performance compared to round-robin methods. It also scales effectively with larger datasets, maintaining low latency and ensuring robust resilience under failure scenarios. This novel approach offers a scalable, efficient, and fault-tolerant solution for healthcare systems, facilitating faster clinical decision-making and improved patient care in complex data environments.
文摘Blockchain has recently sparked interest in both the technological and businessfirms.The Internet of Things's(IoT)core principle emerged due to the connectivity of several new technologies,including wireless technology,the Inter-net,embedded automation systems,and micro-electromechanical devices.Manu-facturing environments and operations have been successfully converted by implementing recent advanced technology like Cloud Computing(CC),Cyber-Physical System(CSP),Information and Communication Technologies(ICT)and Enterprise Model,and other technological innovations into the fourth indus-trial revolution referred to as Industry 4.0.Data management is defined as the pro-cess of accumulation in order to make better business decisions,and process,secure and store information about a company.In the incipient model,there are interconnected contrivances and Machine-to-Machine(M2M)interactions,and transaction data are stored on the Blockchain.Security is a challenging aspect that must be punctiliously considered during the design and development phases of a CSP.In this research article,we proposed a Secure and Distributed Framework for Resource Management(SDFRM)in Industry 4.0 environments within a distribu-ted and collaborative Industry 4.0 system,the dynamic and trust-based Distributed Management Framework(DMF)of shared resource access.Such issues are focused by taking into account of the traditional characteristics of IoT/Industrial Internet of Things’(IIoT)-predicated environments,an SDFRM in Industry 4.0 environments within a distributed and collaborative Industry 4.0 system.Also,to ensure strong privacy over the procedures associated with Access Control(AC),a privacy-preserving method is proposed and integrated into the DMF.The proposed DMF,based on blockchain technology and peer-to-peer networks,allows dynamic access management and system governance without using third parties who could be attacked.We worked hard to design and implement the pro-posal to demonstrate its viability and evaluate its performance.Our proposal out-performs the Multichain Blockchain in terms of successful storage transactions with an achieved average throughput of 98.15%.
文摘The integration of heterogeneous multidatabases on a network is one of the key issues to be sofved in thedevelopment of CIMS (computer integrated manufacturing system). As a solution to this issue, a multidatabase integration environment, CIMBASE, has been developed. CIMBASE adopts an object-oriented data model and provides users with a series of software tools: a query language, a pre-compiler, a graphical database schema editor,a graphical query interface and a form based query generation tool.This paper discusses in detail the major aspectsof CIMBASE: its object-oriented data model, query language interpreter and the design and implementation of itsprc-compiler. The design and algorithms presented in this paper provide a solid foundation for research on multidatabase integration.