In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the po...As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.展开更多
Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and econo...Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.展开更多
Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and sha...Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.展开更多
Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost prob...Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.展开更多
With the coordinated development of today's social economy with science and technology,various advanced technologies are being used in highway engineering,especially the distributed intelligent power supply techno...With the coordinated development of today's social economy with science and technology,various advanced technologies are being used in highway engineering,especially the distributed intelligent power supply technology in expressway tunnels,which has a very significant advantage.In order to realize the effective application of this technology and promote the power supply effect in expressway tunnel,this study analyzes the advantages of this technology and its application in expressway tunnel,hoping to provide scientific reference for the application of distributed intelligent power supply technology and the engineering development of expressway tunnels.展开更多
A full distribution CNC system based on SERCOS bus is studied in accordance with the limitations of traditional PC-based motion card. The conventional PC-based motion control card is dispersed into several autonomous ...A full distribution CNC system based on SERCOS bus is studied in accordance with the limitations of traditional PC-based motion card. The conventional PC-based motion control card is dispersed into several autonomous intelligent servo-control units with the function of servo driver. The autonomous intelligent servocontrol units realize the loop control of position, velocity and current. Interpolation computation is completed in PC and the computational results are transferred to every autonomous intelligent servo-control unit by high speed SERCOS bus. Software or hardware synchronization technology is used to ensure all servomotors are successive and synchronously running. The communication and synchronization technology of SERCOS are also researched and the autonomous intelligent servo-control card is developed byself. Finally, the experiment of circle contour process on a prototype system proves the feasibility.展开更多
In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r...In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.展开更多
The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the ...The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.展开更多
The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that c...The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.展开更多
Cloud manufacturing is a new manufacturing model with crowd-sourcing characteristics,where a cloud alliance composed of multiple enterprises,completes tasks that a single enterprise cannot accomplish by itself.However...Cloud manufacturing is a new manufacturing model with crowd-sourcing characteristics,where a cloud alliance composed of multiple enterprises,completes tasks that a single enterprise cannot accomplish by itself.However,compared with heterogeneous cloud tasks,there are relatively few studies on cloud alliance formation for homogeneous tasks.To bridge this gap,a novel method is presented in this paper.First,a homogeneous cloud task distribution model under cloud environment was constructed,where services description,selection and combination were modeled.An improved leapfrog algorithm for cloud task distribution(ILA-CTD)was designed to solve the proposed model.Different from the current alternatives,the initialization operator and the leapfrog operator in ILA-CTD can ensure that the algorithm always searches the optimal solution in the feasible space.Finally,the processing of task allocation for 1000 pieces of medical labeling machine bottom plates was studied as a case to show the feasibility of the proposed method.The superiority of ILA-CTD was also proven based on more optimal solutions found,compared with the three other methods.展开更多
The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to ...The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to improve the existing control method. These modes that affect the transverse vibration mainly are included to simulate the vibration of rotating disk, and two methods are applied separately on condition that the sensor and the ac tuator are collocated and non collocated. The results obtained by all sided si mulations show that the new method can obtain better control effect, especially when the sensor and the actuator are non collocated.展开更多
Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convol...Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.展开更多
What is a real time agent,how does it remedy ongoing daily frustrations for users,and how does it improve the retrieval performance in World Wide Web?These are the main question we focus on this manuscript.In many dis...What is a real time agent,how does it remedy ongoing daily frustrations for users,and how does it improve the retrieval performance in World Wide Web?These are the main question we focus on this manuscript.In many distributed information retrieval systems,information in agents should be ranked based on a combination of multiple criteria.Linear combination of ranks has been the dominant approach due to its simplicity and effectiveness.Such a combination scheme in distributed infrastructure requires that the ranks in resources or agents are comparable to each other before combined.The main challenge is transforming the raw rank values of different criteria appropriately to make them comparable before any combination.Different ways for ranking agents make this strategy difficult.In this research,we will demonstrate how to rank Web documents based on resource-provided information how to combine several resources raking schemas in one time.The proposed system was implemented specifically in data provided by agents to create a comparable combination for different attributes.The proposed approach was tested on the queries provided by Text Retrieval Conference(TREC).Experimental results showed that our approach is effective and robust compared with offline search platforms.展开更多
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金supported by the National Natural Science Foundation of China with Grants 61771289 and 61832012the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+3 种基金Shandong Natural Science Foundation Major Basic Research with Grant ZR2019ZD10Shandong Key Research and Development Program with Grant 2019GGX1050Shandong Major Agricultural Application Technology Innovation Project with Grant SD2019NJ007National Natural Science Foundation of Shandong Province Grants ZR2022MF304.
文摘As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.
基金funded through the support of the Swedish Transport Administration through Better Interactions in Geotechnics(BIG)the Rock engineering Research Foundation(BeFo)Tyrens AB。
文摘Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.
基金The author extends his appreciation to theDeputyship forResearch&Innovation,Ministry of Education,Saudi Arabia for funding this research work through the Project Number(QUIF-4-3-3-33891)。
文摘Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.
文摘Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.
文摘With the coordinated development of today's social economy with science and technology,various advanced technologies are being used in highway engineering,especially the distributed intelligent power supply technology in expressway tunnels,which has a very significant advantage.In order to realize the effective application of this technology and promote the power supply effect in expressway tunnel,this study analyzes the advantages of this technology and its application in expressway tunnel,hoping to provide scientific reference for the application of distributed intelligent power supply technology and the engineering development of expressway tunnels.
文摘A full distribution CNC system based on SERCOS bus is studied in accordance with the limitations of traditional PC-based motion card. The conventional PC-based motion control card is dispersed into several autonomous intelligent servo-control units with the function of servo driver. The autonomous intelligent servocontrol units realize the loop control of position, velocity and current. Interpolation computation is completed in PC and the computational results are transferred to every autonomous intelligent servo-control unit by high speed SERCOS bus. Software or hardware synchronization technology is used to ensure all servomotors are successive and synchronously running. The communication and synchronization technology of SERCOS are also researched and the autonomous intelligent servo-control card is developed byself. Finally, the experiment of circle contour process on a prototype system proves the feasibility.
基金Supported by the National Natural Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.
基金supportedin part by the National Science Foundation of China(NSFC)under Grant 61631005,Grant 61771065,Grant 61901048in part by the Zhijiang Laboratory Open Project Fund 2020LCOAB01in part by the Beijing Municipal Science and Technology Commission Research under Project Z181100003218015。
文摘The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.
基金the Six Heights of Talent in Jiangsu Prov-ince(No.06-E-044).
文摘The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.
基金The research was financially supported by the National Science and Technology Major Project of China(No.2019ZX04007001)the Science and Technology Major Project of Sichuan Province(No.2020ZDZX0022)。
文摘Cloud manufacturing is a new manufacturing model with crowd-sourcing characteristics,where a cloud alliance composed of multiple enterprises,completes tasks that a single enterprise cannot accomplish by itself.However,compared with heterogeneous cloud tasks,there are relatively few studies on cloud alliance formation for homogeneous tasks.To bridge this gap,a novel method is presented in this paper.First,a homogeneous cloud task distribution model under cloud environment was constructed,where services description,selection and combination were modeled.An improved leapfrog algorithm for cloud task distribution(ILA-CTD)was designed to solve the proposed model.Different from the current alternatives,the initialization operator and the leapfrog operator in ILA-CTD can ensure that the algorithm always searches the optimal solution in the feasible space.Finally,the processing of task allocation for 1000 pieces of medical labeling machine bottom plates was studied as a case to show the feasibility of the proposed method.The superiority of ILA-CTD was also proven based on more optimal solutions found,compared with the three other methods.
文摘The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to improve the existing control method. These modes that affect the transverse vibration mainly are included to simulate the vibration of rotating disk, and two methods are applied separately on condition that the sensor and the ac tuator are collocated and non collocated. The results obtained by all sided si mulations show that the new method can obtain better control effect, especially when the sensor and the actuator are non collocated.
文摘Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.
基金This research was developed at the University of Ottawa as part of“SAMA”search enginea.
文摘What is a real time agent,how does it remedy ongoing daily frustrations for users,and how does it improve the retrieval performance in World Wide Web?These are the main question we focus on this manuscript.In many distributed information retrieval systems,information in agents should be ranked based on a combination of multiple criteria.Linear combination of ranks has been the dominant approach due to its simplicity and effectiveness.Such a combination scheme in distributed infrastructure requires that the ranks in resources or agents are comparable to each other before combined.The main challenge is transforming the raw rank values of different criteria appropriately to make them comparable before any combination.Different ways for ranking agents make this strategy difficult.In this research,we will demonstrate how to rank Web documents based on resource-provided information how to combine several resources raking schemas in one time.The proposed system was implemented specifically in data provided by agents to create a comparable combination for different attributes.The proposed approach was tested on the queries provided by Text Retrieval Conference(TREC).Experimental results showed that our approach is effective and robust compared with offline search platforms.