期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Experimental study on thermal characteristics of a double skin faade building 被引量:2
1
作者 王芳 张小松 +1 位作者 谭俊杰 李秀伟 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期462-466,共5页
An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoo... An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoor environment were measured at different control modes of DSF.The results show that the energy consumption of the air conditioning system in room B with opened exterior vents a closed interior facade and an air cavity with shading was 21.0% less than that in room A with closed exterior vents a closed interior facade and air cavity without shading in 9.5 h. The temperature distributions of the DSF and indoor environment in both horizontal and vertical directions were decisively influenced by shading conditions. The usage of shading devices strengthens the stack effect on the air cavity. Compared to room A the temperature distribution in room B is more uniform with smaller fluctuations.Meanwhile the problem of overheating in the air cavity of the DSF is still present in all tested conditions. 展开更多
关键词 double skin facade THERMAL characteristics temperature distribution energy consumption
下载PDF
Applying Double Skin Facade with ETFE Membrane Assembly for Energy Saving and Acoustic Protection for the Building of the Czech Institute of Informatics,Robotics and Cybernetics in Prague
2
作者 Petr Franta 《Journal of Civil Engineering and Architecture》 2019年第3期178-185,共8页
Multidisciplinary, integrated planning approach by architects, engineers, scientists and manufacturers to reduce energy consumption of buildings. The CIIRC Complex, located on the main campus of Czech Technical Univer... Multidisciplinary, integrated planning approach by architects, engineers, scientists and manufacturers to reduce energy consumption of buildings. The CIIRC Complex, located on the main campus of Czech Technical University in Prague consists of two buildings, newly constructed building and adaptive reuse of existing building. CIIRC—Czech Institute of Informatics, Robotics and Cybernetics is a contemporary teaching facility of new generation and use for scientific research teams. New building has ten above-ground floors, on the bottom 4 floors of laboratories, scientist modules, classrooms, above are offices, meeting rooms, teaching and research modules for professors and students. Offices of the rector are on the last two floors of the building. On the top floor is congress type auditorium, in the basement is fully automatic car park. Double skin pneumatic cushions facade. In the project are introduced series of architectural and technical features and innovations. Probably the most visible is the double skin facade facing south-transparent double layer membrane ETFE (Ethylen-TetraFluorEthylen) cushions with triple glazed modular system assembly. Acting as solar collector, recuperating of hot air on the top floors, saving up to 30% of an energy consumption. 展开更多
关键词 double skin façade as solar collector ETFE membrane cushions as outer skin air-recuperation from façade(top floors).
下载PDF
Optimisation of the double skin facade in hot and humid climates through altering the design parameter combinations 被引量:5
3
作者 Meng Wang Jingxin Hou +2 位作者 Zhongting Hu Wei He Hancheng Yu 《Building Simulation》 SCIE EI CSCD 2021年第3期511-521,共11页
Architects welcome double skin facade(DSF)due to its aesthetic quality.The first DSF structure was intended to prevent cold weather and strong winds.Nowadays,the application of DSF under different climates has been in... Architects welcome double skin facade(DSF)due to its aesthetic quality.The first DSF structure was intended to prevent cold weather and strong winds.Nowadays,the application of DSF under different climates has been investigated in many previous studies.Fiowever,little work had been done on the behaviour of DSF in hot and humid climates.Therefore,this paper aimed to extend the application into this specific climate and Guangzhou was selected as the sample city.Both the climate and the design influence the performance of DSF.In this paper,rather than explore how each design parameter influences the performance,the design was evaluated from an overall aspect.The Designbuilder software was used to build the single skin facade(SSF)and double skin facade base model.Annual HVAC energy consumption for both the two models was calculated and compared.An optimisation process was conducted to figure out what kinds of parameter combination could make the design more energy-saving and thermally comfortable.The results indicated that it was possible to design an energy-saving DSF system applied in hot and humid climates compared with the SSF model.The efficiency of the DSF could be further enhanced with a better parameter combination.The optimised options had some features in common,which could provide some inspirations for the application of DSF in hot and humid climates. 展开更多
关键词 double skin facade(DSF) hot and humid climate tall buildings building simulation optimisation design
原文传递
Numerical study of thermal characteristics of double skin facade system with middle shade
4
作者 Shaoning LIU Xiangfei KONG +2 位作者 Hua YANG Minchao FAN Xin ZHAN 《Frontiers in Energy》 SCIE CSCD 2021年第1期222-234,共13页
Architectural shade is an effective method for improving building energy efficiency.A new shade combined with the double skin façade(DSF)system,called middle shade(MS),was introduced and developed for buildings.I... Architectural shade is an effective method for improving building energy efficiency.A new shade combined with the double skin façade(DSF)system,called middle shade(MS),was introduced and developed for buildings.In this paper,a 3D dynamic simulation was conducted to analyze the influence of MS combined with DSF on the indoor thermal characteristics.The research on MS for DSF involves the temperature,the ventilation rate,the velocity distribution of the air flow duct,and the indoor temperature.The results show that the angle and position of the shade in the three seasons are different,and different conditions effectively enhance the indoor thermal characteristics.In summer,the appearance of MS in DSF makes the indoor temperature significantly lower.The indoor temperature is obviously lower than that of the air flow duct,and the temperature of the air flow duct is less affected by MS.The influence of the position of blinds on indoor temperature and ventilation rate is greater than the influence of the angle of blinds.According to the climate characteristics of winter and transition season,in winter,early spring,and late autumn,the indoor temperature decreases with the increase of the position of blinds at daytime,but the opposite is true at night.The results found in this paper can provide reference for the design and use of MS combined with DSF in hot summer and cold winter zone. 展开更多
关键词 middle shade POSITION thermal characteristics double skin facade
原文传递
THERMAL ENVIRONMENTS OF AN OFFICE BUILDING WITH DOUBLE SKIN FACADE
5
作者 Maryam Khoshbakht Zhonghua Gou +1 位作者 Karine Dupre Hasim Altan 《Journal of Green Building》 2017年第3期3-22,共20页
As a symbol of green architecture,double skin facade(DSF)represents a design which possesses many energy saving features,but due to the complexity of the system,the real performances and benefits have been difficult t... As a symbol of green architecture,double skin facade(DSF)represents a design which possesses many energy saving features,but due to the complexity of the system,the real performances and benefits have been difficult to predict.The objective of this study was to inform the applicability of DSFs,and contribute to the positive impacts of DSF designs.This study compared and contrasted energy savings in a temperate climate,where heating was the dominant energy strategy,and in a subtropical climate,where cooling spaces was the dominant issue.This paper focused on a university office building with a west facing shaft box window facade.The research method was a paired analysis of simulation studies which compared the energy performance of a set of buildings in two different climates.Simulation results showed a good agreement with measurements undertaken in the exiting building during a two-week period.The results specified that DSFs are capable of almost 50%energy savings in temperate and 16%in subtropical climates.Although these indicated DSFs are more suitable for temperate climates than warmer regions,the amount of energy savings in subtropical climates were also considerable.However,due to the costs of DSFs and potential loss of leasable floor area,investigations into other feasible ventilation options are necessary before final building design decisions are made. 展开更多
关键词 double skin facade shaft box window facade building envelope building simulation climate design energy savings
下载PDF
Net-Zero Energy Building Enhancement for a Leadership in Energy and Environmental Design Platinum Educational Facility
6
作者 Aydin Tabrizi Paola Sanguinetti 《Journal of Civil Engineering and Architecture》 2014年第8期963-972,共10页
In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university... In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university is 42 years with an EUI (energy use intensity) of 23 kWh/m^2/y. Current building and energy codes limit the EUI to 16 kWh/m^2/y for new school buildings; this benchmark can vary depending on climate, occupancy, and other contextual factors. Although the LEED (leadership in energy and environmental design) system provides a set of guidelines to rate sustainable buildings, studies have shown that 28%-35% of the educational LEED-rated buildings use more energy than their conventional counterparts. This paper examines the issues specific to a LEED-rated design addition to an existing university building. The forum, a lecture hall expansion of to an existing building at the University of Kansas, has been proposed as environmentally friendly and energy-efficient building addition. Comfort and health aspects have been considered in the design in order to obtain LEED platinum certificate. The forum's energy performance strategies include a double-skin facade to reduce energy consumption and PV (photovoltaic) panels to generate onsite energy. This study considers various scenarios to meet NZEB (net-zero energy building) criteria and maximize energy savings. The feasibility of NZE criteria is evaluated for: (a) seasonal comparison; (b) facility occupancy; (c) PV panels' addition in relation to double skin facade. The results of NZEB approach are compared to LEED platinum requirements, based on Rol (return on investment) and PV panel's efficiency for this specific educational building. 展开更多
关键词 NZEB double skin facade energy plus educational building PV panels LEED
下载PDF
Comparative Analysis of Two Energy-Efficient Technologies Used in the Shanghai Tower
7
作者 Sarah Chen Yuyang Li 《Energy and Power Engineering》 2022年第1期1-12,共12页
Climate change continues to affect the lives of individuals across the world, creating a rise in demand for new technologies that can slow down the impacts of climate change. Shanghai, one of the largest cities in the... Climate change continues to affect the lives of individuals across the world, creating a rise in demand for new technologies that can slow down the impacts of climate change. Shanghai, one of the largest cities in the world, has one of the highest carbon emission levels. In recent years, the research and development of energy-efficient technologies have gained more and more attention. The Shanghai Tower is a pioneer in green building design and a prominent example of Shanghai’s efforts towards low-carbon city development. In this paper, two technologies within the Shanghai Tower<span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">ground source heat pumps (GSHP) and double skin facades (DSF)</span><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">will be analyzed. The paper will consist of firstly an investigation of the principles of the technologies, and then analysis, evaluation, and comparison of their respective characteristics. While both GSHP and DSF are used for sustainable purposes, the effectiveness of technologies depends on what environment the technology is used in and what purpose they serve. The evaluation of GSHP and DSF will be based on their performances under Shanghai’s climate and whether they contribute to the purposes of the Shanghai Tower.</span> 展开更多
关键词 Shanghai Tower Green Buildings Ground Source Heat Pump double skin Facade Energy Efficiency
下载PDF
Study of Construction Techniques and Hygro-Thermal Behavior of a Vernacular Earth Building in a Humid Tropical Climate
8
作者 Mouhamadou Nabi Kane Mapathe Ndiaye Emilie Pinard 《Journal of Building Construction and Planning Research》 2023年第3期69-85,共17页
This study analyzes the know-how of local communities, to draw on techniques that make contemporary buildings more energy efficient. The impluvium hut in the locality of Enampore, Casamance, Southern Senegal, served a... This study analyzes the know-how of local communities, to draw on techniques that make contemporary buildings more energy efficient. The impluvium hut in the locality of Enampore, Casamance, Southern Senegal, served as the object of study. The hut, including several rooms, is entirely built with earthen walls, earthen floor, earthen ceiling, covered by a double straw roof and its central courtyard. A room noted (L) and a semi-opened living space were chosen as spaces for hygro-thermal experimentation. The hottest average temperature obtained respectively in the room (L) and in the living space is 25.5˚C and 27˚C when outside is about 34˚C. The thermal amplitude inside room (L) is 0.88˚C, in semi-opened living space, is 2.6˚C and outside is 9.5˚C. With these results we can say that room (L) undergoes very low temperature variations and that there is no need to air-condition in the enclosure. The thermal amplitude makes it possible to see the influence of the earthen walls on the interior temperature and its regularity compared to the fluctuation of the external temperature. The thermal inertia of the building walls was characterized using also the time lag and the decrement factor. They was respectively 7.0 H and 0.093 for the room (L). With this result we can say that this material has a high thermal inertia. For humidity, it is high around 78.5% in the room (L), 66.0% at the semi-open living room, when it is 59.0% outside. Through this study, it is possible that the revalorization of vernacular architecture can be an alternative to reduce the energy consumption of buildings. 展开更多
关键词 Time Lag Decrement Factor Thermal Inertia double skin Impluvium
下载PDF
Double criterion optimisation of transparent facades based on solar thermal processes
9
作者 Marcin Janicki Dariusz Helm 《Frontiers of Architectural Research》 CSCD 2013年第1期23-29,共7页
This work aimed to find the best possible solution for transparent facades. The evaluation was formulated to assure the highest user comfort criteria corresponding to energy efficiency--two criterion optimisation. The... This work aimed to find the best possible solution for transparent facades. The evaluation was formulated to assure the highest user comfort criteria corresponding to energy efficiency--two criterion optimisation. The analyses were based on BESTEST, south-oriented zone geometry. Computer model was designed using Finite Control Volume Techniques with assumptions for applied materials and specified boundary conditions, plus reference year for energy calculation (WYECZJ. The natural ventilation facade system was desfgned to determine airflow network inside the facade. The adjustable size of openings (inlets and outlets) was selected at the level of 80% for the cold season and totally dosed during the hot season. Environmental parameters for thermal comfort evaluation were: zone resultant temperature and solar radiation in zone space. Energy efficiency was assessed based on heat flux between the zone with controlled temperature and external environment. Results showed that well selected design of buffer zone section could improve energy efficiency of adjacent zones for both winter and summer periods. The most profitable Double Skin Facade solution is DGC (double glazing with low-e coating) combined with single glazing with internal blinds (SGB) or coloured glazing. 展开更多
关键词 Optimisation Sotar radiation Energy Thermal comfort double skin facade GRAZING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部