期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Linear Track Estimation Using Double Pulse Sources for Near-Field Underwater Moving Target 被引量:2
1
作者 Zhifei ChenI Hong Hou +2 位作者 Jianhua Yang Jincai Sun Qian Wang 《Journal of Marine Science and Application》 2013年第2期240-244,共5页
The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of ... The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of the radiated noise. To eliminate this, the track estimation is necessary. In the DPS method, we first estimate bearings of two sinusoidal pulse sources installed in the moving target through baseline positioning method. Meanwhile, the emitted and recorded time of each pulse are also acquired. Then the linear track parameters will be achieved based on the geometry pattern with the help of double sources spacing. The simulated results confirm that the DPS improves the performance of the previous double source spacing method. The simulated experiments were carried out using a moving battery car to further evaluate its performance. When the target is 40-60m away, the experiment results show that biases of track azimuth and abeam distance of DPS are under 0.6° and 3.4m, respectively. And the average deviation of estimated velocity is around 0.25m/s. 展开更多
关键词 linear track estimation double pulse sources (DPS) baseline positioning method time-of-arrival difference
下载PDF
Numerical simulation of dynamic thermal process during doublesided asymmetrical TIG backing welding of large thick plates 被引量:2
2
作者 刘殿宝 赵慧慧 +2 位作者 李福泉 张广军 吴林 《China Welding》 EI CAS 2011年第1期44-48,共5页
The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the t... The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance. 展开更多
关键词 numerical simulation double-sided asymmetrical TIG backing welding thermal process double heat sources on double sides
下载PDF
General expression of double ellipsoidal heat source model and its error analysis
3
作者 郑振太 单平 +2 位作者 张凯 付坤 唐新新 《China Welding》 EI CAS 2008年第4期22-27,共6页
In order to analyze the maximum power density error with different heat flux distribution parameter values for double ellipsoidal heat source model, a general expression of double ellipsoidal heat source model was der... In order to analyze the maximum power density error with different heat flux distribution parameter values for double ellipsoidal heat source model, a general expression of double ellipsoidal heat source model was derived .front Goldak double ellipsoidal heat source model, and the error of maximum power density was analyzed under this foundation. The calculation error of thermal cycling parameters caused by the maximum power density error was compared quantitatively by numerical simulation. The results show that for guarantee the accuracy of welding numerical simulation, it is better to introduce an error correction coefficient into the Goldak double ellipsoidal heat source model expression. And, heat flux distribution parameter should get higher value for the higher power density welding methods. 展开更多
关键词 double ellipsoidal heat source model numerical simulation beat flux distribution parameter maximum power density
下载PDF
Simulation study of a magnetocardiogram based on a virtual heart model:effect of a cardiac equivalent source and a volume conductor 被引量:3
4
作者 寿国法 夏灵 +2 位作者 马平 唐发宽 戴灵 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期121-128,共8页
In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contr... In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies. 展开更多
关键词 virtual heart model MAGNETOCARDIOGRAM dipole source equivalent double layer source volume conductor model
原文传递
Finite element simulation of three-dimensional temperature field in underwater welding 被引量:1
5
作者 刘习文 王国荣 +1 位作者 石永华 钟继光 《China Welding》 EI CAS 2007年第2期59-65,共7页
Mathematical models of three-dimensional temperature fields in underwater welding with moving heat sources are built. Double ellipsoid Gauss model is proposed as heat sources models. Several factors which affect the t... Mathematical models of three-dimensional temperature fields in underwater welding with moving heat sources are built. Double ellipsoid Gauss model is proposed as heat sources models. Several factors which affect the temperature fields of underwater welding are analyzed. Water has little influence on thermal efftciency. Water convection coefftcient varies with the temperature difference between the water and the workpiece , and water convection makes molten pool freeze quickly. With the increase of water depth, the dimensions of heat sources model should be reduced as arc shrinks. Finite element technology is used to solve mathematical models. ANSYS software is used as finite element tool, and ANSYS Parametric Design Language is used to develop subprograms for loading the moving heat sources and the various convection coefftcients. Experiment results show that computational results by using double ellipsoid Gauss heat sources model accord well with the experimental results. 展开更多
关键词 underwater welding temperature fields finite element method double ellipsoid Gauss heat sources model water convection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部