An improved delayed detached eddy simulation (IDDES) method based on the k-x-SST (shear stress transport) turbulence model was applied to predict the unsteady vortex breakdown past an 80o/65o double-delta wing (...An improved delayed detached eddy simulation (IDDES) method based on the k-x-SST (shear stress transport) turbulence model was applied to predict the unsteady vortex breakdown past an 80o/65o double-delta wing (DDW), where the angles of attack (AOAs) range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such mea-surements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36o, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.展开更多
The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Ae...The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Aerodynamic Coefficients. Two wing options are covered as analysis space, namely, the double-delta wing and streak wing, getting two analysis groups respectively. Good agreement between the computation results and the wind tunnel tests shows that the methodology presented is a simple and reliable way to calculate this kind of novel wing-body configurations.展开更多
For correct identification of vortices,this paper first analyzes the properties of the rigid vortex core and its induced flow field given by the Rankine vortex model,and it is concluded that the concentrated vortex st...For correct identification of vortices,this paper first analyzes the properties of the rigid vortex core and its induced flow field given by the Rankine vortex model,and it is concluded that the concentrated vortex structure should consist of the vortex core and the induced flow field(the potential flow region with a weak shear layer).Then the vortex structure is analyzed by using the Oseen vortex model.Compared with the Rankine vortex,the Oseen vortex is a concentrated vortex with a deformed vortex core.The vortex structure consists of the vortex core region,the transition region and the shear layer region(or the potential flow region).The transition region reflects the properties of the resultant vorticity of the same magnitude and the resultant deformation rate of the shear layer,and the transition region also determines the boundary of the vortex core.Finally,the evolution of leading-edge vortices of the double-delta wing is numerically simulated.And with different vortex identification methods,the shape and the properties of the leading-edge vortices identified by each method are analyzed and compared.It is found that in the vorticity concentration region,the vortices obtained by using ω,λ2,Ω criteria and Q criteria are basically identical when appropriate threshold values are adopted.However,in the region where the vorticity is dispersed,due to the influence of the flow viscous effect and the adverse pressure gradient,the results obtained by different vortex identification methods can be quite different,as well as the related physical properties,which need to be further studied.展开更多
基金co-supported by Innovative Foundation of CARDCthe National Natural Science Foundation of China (No. 11072129)
文摘An improved delayed detached eddy simulation (IDDES) method based on the k-x-SST (shear stress transport) turbulence model was applied to predict the unsteady vortex breakdown past an 80o/65o double-delta wing (DDW), where the angles of attack (AOAs) range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such mea-surements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36o, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.
文摘The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Aerodynamic Coefficients. Two wing options are covered as analysis space, namely, the double-delta wing and streak wing, getting two analysis groups respectively. Good agreement between the computation results and the wind tunnel tests shows that the methodology presented is a simple and reliable way to calculate this kind of novel wing-body configurations.
基金supported by the National Natural Science Foundation of China(Grant No.11772033).
文摘For correct identification of vortices,this paper first analyzes the properties of the rigid vortex core and its induced flow field given by the Rankine vortex model,and it is concluded that the concentrated vortex structure should consist of the vortex core and the induced flow field(the potential flow region with a weak shear layer).Then the vortex structure is analyzed by using the Oseen vortex model.Compared with the Rankine vortex,the Oseen vortex is a concentrated vortex with a deformed vortex core.The vortex structure consists of the vortex core region,the transition region and the shear layer region(or the potential flow region).The transition region reflects the properties of the resultant vorticity of the same magnitude and the resultant deformation rate of the shear layer,and the transition region also determines the boundary of the vortex core.Finally,the evolution of leading-edge vortices of the double-delta wing is numerically simulated.And with different vortex identification methods,the shape and the properties of the leading-edge vortices identified by each method are analyzed and compared.It is found that in the vorticity concentration region,the vortices obtained by using ω,λ2,Ω criteria and Q criteria are basically identical when appropriate threshold values are adopted.However,in the region where the vorticity is dispersed,due to the influence of the flow viscous effect and the adverse pressure gradient,the results obtained by different vortex identification methods can be quite different,as well as the related physical properties,which need to be further studied.