针对现有气力式播种机排种装置的传动和供气系统复杂、机械结构无法适配智能变量作业、气力供给风压消耗大且稳定性差等问题,该研究应用发明问题解决理论(theory of inventive problem solving,TRIZ)与公理化设计(axiomatic design theo...针对现有气力式播种机排种装置的传动和供气系统复杂、机械结构无法适配智能变量作业、气力供给风压消耗大且稳定性差等问题,该研究应用发明问题解决理论(theory of inventive problem solving,TRIZ)与公理化设计(axiomatic design theory,AD)方法,开展油菜气力精量排种装置设计。首先使用TRIZ技术成熟度预测和进化定律分析,阐明了排种技术发展阶段和进化路径及潜力;其次建立基于TRIZ和AD集成的设计过程模型,求解时在功能域到结构域映射过程中引入TRIZ工具,采用“冲突解决原理”解决现有排种装置中涉及的传动系统、供气系统矛盾冲突,分析对改善结构参数有用的发明原理和对应的方案,最终确定电机直接驱动排种盘和风机内置气室的解决方案,构造并求解其原始设计矩阵,并通过独立公理和信息公理判断该解决方案的合理性及最优化。最后进行电机风机集成式油菜气力精量排种装置设计,确定电机风机同侧排布技术方案,集成电机驱动简化传动,集成风机取消输气管道降低风压损失。台架试验结果表明,设计的集成式排种器排种性能满足油菜单粒排种要求,吸种负压绝对值取1.0~2.0 kPa、作业速度小于7 km/h时,排种合格指数均大于90%,且合格指数达到90%需要的风压低于现有排种装置风机和输气管道布局所需风压。本研究可为气力式排种器设计提供思路和参考。展开更多
Based on the structural characteristic of metal drill collar for induction logging while drilling, we have given the analytical formulae of lengthways fields Ez and Hz when the tool is located in a fan-ring shaped slo...Based on the structural characteristic of metal drill collar for induction logging while drilling, we have given the analytical formulae of lengthways fields Ez and Hz when the tool is located in a fan-ring shaped slot of drill collar by the boundary conditions of electromagnetic field, and derived the other components of electromagnetic field in and out the fan-ring slot from Ez and Hz. In the other intervals of formation, where the drill collar is a solid cylinder, the analytical formulae of field are educed through the method of variable coefficient. The total analytical solutions of field in whole space have been obtained. With the help of the analytical formulae, we have also given numerical examples and analyzed the distributive characteristic of electromagnetic field. From the computational results we find that the secondary scattering field Hz is in a linear relation with the conductivity of stratum. The characteristic of field is very useful for induction logging while drilling, which can be used to measure and analyze the logging responses of the stratum conductivity. This paper sets up a theoretical foundation for us to study the distrbutions of field and to direct the design of logging instruments.展开更多
文摘针对现有气力式播种机排种装置的传动和供气系统复杂、机械结构无法适配智能变量作业、气力供给风压消耗大且稳定性差等问题,该研究应用发明问题解决理论(theory of inventive problem solving,TRIZ)与公理化设计(axiomatic design theory,AD)方法,开展油菜气力精量排种装置设计。首先使用TRIZ技术成熟度预测和进化定律分析,阐明了排种技术发展阶段和进化路径及潜力;其次建立基于TRIZ和AD集成的设计过程模型,求解时在功能域到结构域映射过程中引入TRIZ工具,采用“冲突解决原理”解决现有排种装置中涉及的传动系统、供气系统矛盾冲突,分析对改善结构参数有用的发明原理和对应的方案,最终确定电机直接驱动排种盘和风机内置气室的解决方案,构造并求解其原始设计矩阵,并通过独立公理和信息公理判断该解决方案的合理性及最优化。最后进行电机风机集成式油菜气力精量排种装置设计,确定电机风机同侧排布技术方案,集成电机驱动简化传动,集成风机取消输气管道降低风压损失。台架试验结果表明,设计的集成式排种器排种性能满足油菜单粒排种要求,吸种负压绝对值取1.0~2.0 kPa、作业速度小于7 km/h时,排种合格指数均大于90%,且合格指数达到90%需要的风压低于现有排种装置风机和输气管道布局所需风压。本研究可为气力式排种器设计提供思路和参考。
基金Supported by the National Natural Science Foundation of China(Grant No.10705049)the Beijing Natural Science Foundation(Grant No.1083011)Fund-ing Project for Academic Human Resources Development in Institutions of Higher Learning[PHR(IHLB)]
文摘Based on the structural characteristic of metal drill collar for induction logging while drilling, we have given the analytical formulae of lengthways fields Ez and Hz when the tool is located in a fan-ring shaped slot of drill collar by the boundary conditions of electromagnetic field, and derived the other components of electromagnetic field in and out the fan-ring slot from Ez and Hz. In the other intervals of formation, where the drill collar is a solid cylinder, the analytical formulae of field are educed through the method of variable coefficient. The total analytical solutions of field in whole space have been obtained. With the help of the analytical formulae, we have also given numerical examples and analyzed the distributive characteristic of electromagnetic field. From the computational results we find that the secondary scattering field Hz is in a linear relation with the conductivity of stratum. The characteristic of field is very useful for induction logging while drilling, which can be used to measure and analyze the logging responses of the stratum conductivity. This paper sets up a theoretical foundation for us to study the distrbutions of field and to direct the design of logging instruments.