The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this ...The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this study,the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters,such as weight on bit(WOB)and revolutions per minute(RPM).Also,artificial neural networks(ANN)model for predicting the rate of penetration(ROP)was developed using datasets acquired during the drilling operation.The relationships among mechanical operating parameters(WOB and RPM)and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model.The results show that ROP has an exponential relationship with WOB,whereas ROP has linear relationship with RPM.Finally,the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal.展开更多
Currently, due to the detrimental effects on surface finish and machining system, chatter has been one crucial factor restricting robotic drilling operations, which improve both quality and efficiency of aviation manu...Currently, due to the detrimental effects on surface finish and machining system, chatter has been one crucial factor restricting robotic drilling operations, which improve both quality and efficiency of aviation manufacturing. Based on the matrix notch filter and fast wavelet packet decomposition, this paper presents a novel pre-generated matrix-based real-time chatter monitoring method for robotic drilling. Taking vibration characteristics of robotic drilling into account, the matrix notch filter is designed to eliminate the interference of spindle-related components on the measured vibration signal. Then, the fast wavelet packet decomposition is presented to decompose the filtered signal into several equidistant frequency bands, and the energy of each sub-band is obtained. Finally, the energy entropy which characterizes inhomogeneity of energy distribution is utilized as the feature to recognize chatter on-line, and the effectiveness of the presented algorithm is validated by extensive experimental data. The results show that the proposed algorithm can effectively detect chatter before it is fully developed. Moreover, since both filtering and decomposition of signal are implemented by the pre-generated matrices, calculation for an energy entropy of vibration signal with 512 samples takes only about 0.690 ms. Consequently, the proposed method achieves real-time chatter monitoring for robotic drilling, which is essential for subsequent chatter suppression.展开更多
Artificial Intelligence(AI)is becoming popular for the Rate of Penetration(ROP)estimation,hence,the need to study the best techniques and their advantages over empirical models.Various literatures were analysed to det...Artificial Intelligence(AI)is becoming popular for the Rate of Penetration(ROP)estimation,hence,the need to study the best techniques and their advantages over empirical models.Various literatures were analysed to determine the prevalence of AI in ROP computation and compare the computation accuracies with empirical models.Artificial Neural Network(ANN)accounted for over 92%of the AI techniques used for ROP computation and Weight on Bit(WOB)mostly influenced the computation accuracy.The accuracy of AI algorithms is better than the empirical models thus,will improve the drilling efficiency,reduce cost and enhance the development of pad wells.展开更多
文摘The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this study,the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters,such as weight on bit(WOB)and revolutions per minute(RPM).Also,artificial neural networks(ANN)model for predicting the rate of penetration(ROP)was developed using datasets acquired during the drilling operation.The relationships among mechanical operating parameters(WOB and RPM)and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model.The results show that ROP has an exponential relationship with WOB,whereas ROP has linear relationship with RPM.Finally,the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal.
基金supported by the National Key R&D Program of China (No. 2017YFB1302601 and 2018YFB1702503)
文摘Currently, due to the detrimental effects on surface finish and machining system, chatter has been one crucial factor restricting robotic drilling operations, which improve both quality and efficiency of aviation manufacturing. Based on the matrix notch filter and fast wavelet packet decomposition, this paper presents a novel pre-generated matrix-based real-time chatter monitoring method for robotic drilling. Taking vibration characteristics of robotic drilling into account, the matrix notch filter is designed to eliminate the interference of spindle-related components on the measured vibration signal. Then, the fast wavelet packet decomposition is presented to decompose the filtered signal into several equidistant frequency bands, and the energy of each sub-band is obtained. Finally, the energy entropy which characterizes inhomogeneity of energy distribution is utilized as the feature to recognize chatter on-line, and the effectiveness of the presented algorithm is validated by extensive experimental data. The results show that the proposed algorithm can effectively detect chatter before it is fully developed. Moreover, since both filtering and decomposition of signal are implemented by the pre-generated matrices, calculation for an energy entropy of vibration signal with 512 samples takes only about 0.690 ms. Consequently, the proposed method achieves real-time chatter monitoring for robotic drilling, which is essential for subsequent chatter suppression.
文摘Artificial Intelligence(AI)is becoming popular for the Rate of Penetration(ROP)estimation,hence,the need to study the best techniques and their advantages over empirical models.Various literatures were analysed to determine the prevalence of AI in ROP computation and compare the computation accuracies with empirical models.Artificial Neural Network(ANN)accounted for over 92%of the AI techniques used for ROP computation and Weight on Bit(WOB)mostly influenced the computation accuracy.The accuracy of AI algorithms is better than the empirical models thus,will improve the drilling efficiency,reduce cost and enhance the development of pad wells.