期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Gas Film Disturbance Characteristics Analysis of High-Speed and High-Pressure Dry Gas Seal 被引量:13
1
作者 CHEN Yuan JIANG Jinbo PENG Xudong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1226-1233,共8页
The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's abili... The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS. 展开更多
关键词 high-speed and high-pressure dry gas seal gas film thickness disturbance dynamic tracking property
下载PDF
Leakage and Stiffness Characteristics of Bionic Cluster Spiral Groove Dry Gas Seal 被引量:3
2
作者 Jin-Bo Jiang Xu-Dong Peng +1 位作者 Ji-Yun Li Yuan Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期148-158,共11页
Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well so... Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well solved by optimization of geometrical parameters and molded line of spiral groove. A new type of bionic cluster spiral groove DGS(CS?DGS) is proved to have superior film stability than S?DGS at the condition of high?speed and low?pressure numerically. A bionic CS?DGS is experimentally investigated and compared with common S?DGS in order to provide evidence for theoretical study. The film thickness and leakage rate of both bionic spiral groove and common spiral groove DGS are measured and compared with each other and with theoretical values under different closing force at the condition of static pressure, high?speed and low?pressure, and the film stiffness and stiffness?leakage ratio of these two face seals are derived by the relationship between closing force and film thickness at the steady state. Experimental results agree well with the theory that the leakage and stiffness of bionic CS?DGS are superior to that of common S?DGS under the condition of high?speed and low?pressure, with the decreasing amplitude of 20% to 40% and the growth amplitude of 20%, respectively. The opening performance and stiffness characteristics of bionic CS?DGS are inferior to that of common S?DGS when rotation speed equals to 0 r/min. The proposed research provides a new method to measure the axis film stiffness of DGS, and validates the superior performance of bionic CS?DGS at the condition of high?speed and low?pressure experimentally. 展开更多
关键词 Bionic cluster spiral groove Film stiffness dry gas seal Leakage rate
下载PDF
Dynamic Coupling Correlation of Gas Film in Dry Gas Seal with Spiral Groove 被引量:1
3
作者 LIU Zhengxian WANG Musu +1 位作者 ZHOU Yue WU Ningning 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期853-859,共7页
In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the l... In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the leakage flow rate can be obtained by finite element method, computational fluid dynamics method and experimental measurement method. However, it will take much time to carry out the above measurements and calculations. In this paper, the approximate model of parallel grooves based on the narrow groove theory is used to establish the dynamic equations of the gas film for the purpose of obtaining the dynamic parameters of gas film. The nonlinear differential equations of gas film model are solved by Runge-Kutta method and shooting method. The numerical values of the pressure profiles, leakage flux and opening force on the seal surface are integrated, and then compared to experimental data for the reliability of the numerical simulation. The results show that the numerical simulation curves are in good agreement with experimental values. Furthermore, the opening force and the leakage flux are proved to be strongly correlated with the operating parameters. Then, the function-coupling method is introduced to analyze the numerical results to obtain the correlation formulae of the opening force and leakage flux respectively with the operating parameters, i.e., the inlet pressure and the rotating speed. This study intends to provide an effective way to predict the aerodynamic performance for designing and optimizing the groove styles in dry gas seal rapidly and accurately. 展开更多
关键词 dry gas seal spiral groove gas film dynamic data fitting method coupling function
下载PDF
Experiment on Wear Behavior of High Pressure Gas Seal Faces 被引量:1
4
作者 XU Jing PENG Xudong +2 位作者 BAI Shaoxian MENG Xiangkai LI Jiyun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1287-1293,共7页
Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pre... Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures. 展开更多
关键词 dry gas seal STRUCTURES face wear high pressure mechanical deformation
下载PDF
Study on seal improvement and rotor thrust control of centrifugal compressor
5
作者 王维民 Gao Jinji Li Shuangxi Jiang Zhinong 《High Technology Letters》 EI CAS 2007年第3期273-278,共6页
Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow thr... Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow through balance drum seal can seriously affect the efficiency of compressor. A method that can improve both the efficiency and reliability of centrifugal compressor is presented. The method focused on rotor thrust control and balance drum seal upgrading. The low leakage feature of Dry-Gas-Seal(DGS), high reliability of labyrinth, and the feasibility of upgrading existing structure are taken into account at the same time to design a combined labyrinth-dry gas seal system on the balancing drum. Based on the combined seal system, a Fault Self-Recovering(FSR) system for the fault of rotor shaft displacement is introduced to assure the safety and reliability of centrifugal compressor. The modern Computational Fluid Dynamics(CFD) is used to validate this envision. The numerical result and relevant information indicate that the combined sealing system could improve the efficiency of the centrifugal compressor by about 4%. 展开更多
关键词 centrifugal compressor EFFICIENCY dry gas seal rotor thrust FSR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部