This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Theref...Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.展开更多
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,th...To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.展开更多
Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of tryi...Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of trying.A unified numerical predictor-corrector guidance method based on characteristic models for aerocapture is proposed.The numerical predictor-corrector guidance method is used to achieve autonomy and high accuracy,and the characteristic model control method is introduced to achieve robustness.At the same time,by transforming path constraints,characteristic model equations including apogee deviation and altitude differentiation are established.Based on the characteristic model equations,a unified guidance law which can satisfy path constraints and guidance objectives simultaneously is designed.In guidance problems,guidance deviation is not directly obtained from the output of the dynamics at present,but is calculated through integral and algebraic equations.Therefore,the method of directly discretizing differential equations cannot be used to establish characteristic models,which brings great difficulty to characteristic modeling.A method for characteristic modeling of guidance problems is proposed,and convergence analysis of the proposed guidance law is also provided.Finally,a joint numerical simulation of guidance and control considering navigation deviation and various uncertainties is conducted to verify the effectiveness of the proposed method.The proposed unified method can be extended to general aerodynamic entry guidance designs,providing theoretical and methodological support for them.展开更多
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u...This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.展开更多
With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establis...To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establishing a desired model for free-time convergent error dynamics,characterized by its independence from initial conditions and guidance parameters,and adjustable convergence time.This foundation facilitates the derivation of specific guidance laws that integrate constraints such as leading angle,impact angle,and impact time.The theoretical framework of this study elucidates the nuances and synergies between the proposed guidance laws and existing methodologies.Empirical evaluations through simulation comparisons underscore the enhanced accuracy and adaptability of the proposed laws.展开更多
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ...Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.展开更多
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no...Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross...In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross product guidance in the core 2nd stage, and a nonlinear adaptive guidance algorithm in core 3rd stage, in order to achieve high orbit injection precision. On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong province, inserting its payload into a low earth orbit at an altitude of 500 kilometers, validating the guidance algorithm.展开更多
Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-s...A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.展开更多
Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the ...Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.展开更多
Under the background of“fostering character and civic virtue,”higher education must effectively integrate ideological and political education.The concept of curriculum ideology and politics has become increasingly d...Under the background of“fostering character and civic virtue,”higher education must effectively integrate ideological and political education.The concept of curriculum ideology and politics has become increasingly developed and sophisticated,which can be a guiding concept for the teaching and reform practice of college students’employment guidance courses.Based on educational observation and logical analysis,this paper elaborates on the connotation of the concept of curriculum ideology and politics,analyzes the key points of the reform of college students’employment guidance courses under this concept,and affirms the value of course reform.On this basis,this paper specifically analyzes the common problems in the reform of the employment guidance course under the new concept and makes a detailed interpretation of the performance problems such as the vague course objectives and the lack of innovation in the course teaching methods.Combined with the relevant problems,this paper proposes strategies such as building the course objective system by linking the curriculum ideology and politics,and driving the teaching innovation of the course from multiple perspectives,aiming to provide more references for the corresponding course reform.展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
In the context of the era of continuous development of artificial intelligence, the labor value of university students is impacted by technological substitution. Simultaneously, university students are also required t...In the context of the era of continuous development of artificial intelligence, the labor value of university students is impacted by technological substitution. Simultaneously, university students are also required to constantly update their skills. All of the above will be the challenge of university students’ employment prospects. However, artificial intelligence will also bring new opportunities, which will stimulate the innovation ability of university students and bring new directions for employment. In order to better cope with the possible impact of artificial intelligence, universities should incorporate employment guidance services into the “three-wide education” system. To achieve this, universities need to take the following measures: developing the dynamic monitoring system of university employment based on big data, constructing the employment guidance curriculum system of university students throughout the whole process, updating the mode of diversified employment guidance service as well as establishing a team of employment guidance teachers keeping pace with the times. These measures aim to better adapt to the job market demands in the context of artificial intelligence, guide students to actively respond to the possible impact of artificial intelligence technology, cultivate their core competencies and qualities that are less likely to be replaced by artificial intelligence, and promote the high-quality employment of university students.展开更多
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
基金supported by the Funds for the Central Universities。
文摘To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.
基金The National Key R&D Program of China(2018YFA0703800)。
文摘Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of trying.A unified numerical predictor-corrector guidance method based on characteristic models for aerocapture is proposed.The numerical predictor-corrector guidance method is used to achieve autonomy and high accuracy,and the characteristic model control method is introduced to achieve robustness.At the same time,by transforming path constraints,characteristic model equations including apogee deviation and altitude differentiation are established.Based on the characteristic model equations,a unified guidance law which can satisfy path constraints and guidance objectives simultaneously is designed.In guidance problems,guidance deviation is not directly obtained from the output of the dynamics at present,but is calculated through integral and algebraic equations.Therefore,the method of directly discretizing differential equations cannot be used to establish characteristic models,which brings great difficulty to characteristic modeling.A method for characteristic modeling of guidance problems is proposed,and convergence analysis of the proposed guidance law is also provided.Finally,a joint numerical simulation of guidance and control considering navigation deviation and various uncertainties is conducted to verify the effectiveness of the proposed method.The proposed unified method can be extended to general aerodynamic entry guidance designs,providing theoretical and methodological support for them.
基金supported by the National Natural Science Foundation of China(Grant No.12072090)。
文摘This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
基金supported by the National Natural Science Foundation of China(12002370).
文摘To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establishing a desired model for free-time convergent error dynamics,characterized by its independence from initial conditions and guidance parameters,and adjustable convergence time.This foundation facilitates the derivation of specific guidance laws that integrate constraints such as leading angle,impact angle,and impact time.The theoretical framework of this study elucidates the nuances and synergies between the proposed guidance laws and existing methodologies.Empirical evaluations through simulation comparisons underscore the enhanced accuracy and adaptability of the proposed laws.
基金supported by the Lorenz B?hler Fonds,#2/19 (obtained by the Neuroregeneration Group,Ludwig Boltzmann Institute for Traumatology)the City of Vienna project ImmunTissue,MA23#30-11 (obtained by the Department Life Science Engineering,University of Applied Sciences Technikum Wien)。
文摘Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.
基金supported by the National Natural Science Foundation of China,Nos. 81760247, 82171450the Scientific Research Foundation for Doctors of the Affiliated Hospital of Zunyi Medical University,No.(2016)14 (all to HH)。
文摘Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
文摘In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross product guidance in the core 2nd stage, and a nonlinear adaptive guidance algorithm in core 3rd stage, in order to achieve high orbit injection precision. On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong province, inserting its payload into a low earth orbit at an altitude of 500 kilometers, validating the guidance algorithm.
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
基金The National Natural Science Foundation of China(Project No.52102436)The Natural Science Foundation of Shanghai(Project No.23ZR1462700)+3 种基金The National Key Laboratory Open Fund for Strength and Structural Integrity(Project No.ASSIKFJJ202304006)The Shanghai Aerospace Science and Technology Innovation Fund(Project No.SAST2022-031)The National Key Laboratory of Space Intelligent Control(Project No.2023-JCJQ-LB-006-14)The Shanghai Key Laboratory of Spacecraft Mechanism(Project No.YY-F805202210025)。
文摘A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.
文摘Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.
文摘Under the background of“fostering character and civic virtue,”higher education must effectively integrate ideological and political education.The concept of curriculum ideology and politics has become increasingly developed and sophisticated,which can be a guiding concept for the teaching and reform practice of college students’employment guidance courses.Based on educational observation and logical analysis,this paper elaborates on the connotation of the concept of curriculum ideology and politics,analyzes the key points of the reform of college students’employment guidance courses under this concept,and affirms the value of course reform.On this basis,this paper specifically analyzes the common problems in the reform of the employment guidance course under the new concept and makes a detailed interpretation of the performance problems such as the vague course objectives and the lack of innovation in the course teaching methods.Combined with the relevant problems,this paper proposes strategies such as building the course objective system by linking the curriculum ideology and politics,and driving the teaching innovation of the course from multiple perspectives,aiming to provide more references for the corresponding course reform.
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.
文摘In the context of the era of continuous development of artificial intelligence, the labor value of university students is impacted by technological substitution. Simultaneously, university students are also required to constantly update their skills. All of the above will be the challenge of university students’ employment prospects. However, artificial intelligence will also bring new opportunities, which will stimulate the innovation ability of university students and bring new directions for employment. In order to better cope with the possible impact of artificial intelligence, universities should incorporate employment guidance services into the “three-wide education” system. To achieve this, universities need to take the following measures: developing the dynamic monitoring system of university employment based on big data, constructing the employment guidance curriculum system of university students throughout the whole process, updating the mode of diversified employment guidance service as well as establishing a team of employment guidance teachers keeping pace with the times. These measures aim to better adapt to the job market demands in the context of artificial intelligence, guide students to actively respond to the possible impact of artificial intelligence technology, cultivate their core competencies and qualities that are less likely to be replaced by artificial intelligence, and promote the high-quality employment of university students.