期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Regulating Actuations and Shapes of Liquid Crystal Elastomers through Combining Dynamic Covalent Bonds with Cooling-Rate-Mediated Control
1
作者 Ya-Wen Liu Huan Liang +6 位作者 Hong-Tu Xu En-Jian He Zhi-Jun Yang Yi-Xuan Wang Yen Wei Zhen Li Yan Ji 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1442-1448,I0008,共8页
Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shape... Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shapes for each actuation cycle upon liquid crystal-isotropic phase transitions induced by external stimuli.Here,we propose to regulate the actuation modes and the locked shapes of a pre-orientated epoxy LCE by combining dynamic covalent bonds with cooling-rate-mediated control.The actuation modes can be adjusted on demand by exchange reactions of dynamic covalent bonds.Derived from the established actuation modes,such as elongation,bending,and spiraling,the epoxy LCE displays varied locked shapes at room temperature under different cooling rates.Various mediums are utilized to control the cooling rate,including water,silicone oil,and copper plates.This approach provides a novel way for regulating the actuation modes and locked shapes of cuttingedge intelligent devices. 展开更多
关键词 Liquid crystal elastomer EPOXY dynamic covalent bond Vitrimer Cooling rate
原文传递
Synergistic Dual Dynamic Bonds in Covalent Adaptable Networks 被引量:1
2
作者 Jun Zhao Zhaoming Zhang +1 位作者 Chunyu Wang Xuzhou Yan 《CCS Chemistry》 CSCD 2024年第1期41-56,共16页
Covalent adaptable networks(CANs),comprising polymer networks crosslinked by dynamic covalent bonds(DCBs),have garnered considerable attention as sustainable materials.Mastering the stress relaxation of CANs is essent... Covalent adaptable networks(CANs),comprising polymer networks crosslinked by dynamic covalent bonds(DCBs),have garnered considerable attention as sustainable materials.Mastering the stress relaxation of CANs is essential for controlling their viscoelastic properties.An unexpected acceleration of stress relaxation has been observed in CANs containing dual dynamic bonds.The dynamic behavior of the second dynamic bonds can accelerate stress relaxation and lower the relaxation activation energy of dual dynamic CANs compared to analogous CANs that rely on only one type of DCB.These findings complement current approaches that utilize catalysts or adjust network parameters.In this minireview,we summarize the synergistic acceleration effects in various CANs containing dual dynamic bonds.We classify these effects based on the second dynamic bonds,including noncovalent bonds,mechanical bonds,and the second DCBs.We also discuss the mechanisms behind this synergy.Finally,we highlight the challenges and offer perspectives on harnessing the synergistic effects of these dual dynamic systems to expand the chemistry and applications of CANs. 展开更多
关键词 covalent adaptable networks dynamic covalent bonds dynamic materials stress relaxation synergistic effect
下载PDF
Creep-Resistant Covalent Adaptable Networks with Excellent SelfHealing and Reprocessing Performance via Phase-Locked Dynamic Covalent Benzopyrazole-Urea Bonds
3
作者 Miao Xie Xiao-Rong Wang +1 位作者 Zhan-Hua Wang He-Sheng Xia 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1545-1556,I0013,共13页
Covalent adaptive networks(CANs)are capable of undergoing segment rearrangement after being heated,which endows the materials with excellent self-healing and reprocessing performance,providing an efficient solution to... Covalent adaptive networks(CANs)are capable of undergoing segment rearrangement after being heated,which endows the materials with excellent self-healing and reprocessing performance,providing an efficient solution to the environment pollution caused by the plastic wastes.The main challenge remains in developing CANs with both excellent reprocessing performance and creep-resistance property.In this study,a series of CANs containing dynamic covalent benzopyrazole-urea bonds were developed based on the addition reaction between benzopyrazole and isocyanate groups.DFT calculation confirmed that relatively low dissociation energy is obtained through undergoing a five-member ring transition state,confirming excellent dynamic property of the benzopyrazole-urea bonds.As verified by the FTIR results,this nice dynamic property can be well maintained after incorporating the benzopyrazole-urea bonds into polymer networks.Excellent self-healing and reprocessing performance is observed by the 3-ABP/PDMS elastomers owing to the dynamic benzopyrazole-urea bonds.Phase separation induced by the aggregation of the hard segments locked the benzopyrazole-urea bonds,which also makes the elastomers display excellent creep-resistance performance.This hard phase locking strategy provides an efficient approach to design CANs materials with both excellent reprocessing and creep-resistance performance. 展开更多
关键词 covalent adaptive networks Self-healing polymer dynamic covalent bond
原文传递
Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings
4
作者 Jianye Kang Xinyu Yang +4 位作者 Xuhao Yang Jiahui Sun Yuhang Liu Shutao Wang Wenlong Song 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期232-237,共6页
Due to the various pH liquid environment in nature,the pH-responsive lubricating hydrogel is widely investigated and developed for tissue interface substitute.However,the applied liquid environment will lead to poor m... Due to the various pH liquid environment in nature,the pH-responsive lubricating hydrogel is widely investigated and developed for tissue interface substitute.However,the applied liquid environment will lead to poor mechanical property and weaken the pH-responsive capability.In this work,a carbon dotsenhanced pH-responsive lubricating hydrogel is developed by combining a pH-responsive section of dynamic PVA-borax network into a PAAm covalent polymer network.The formed hydrogel presents a partial gel-sol transition under controlled pH environments.At low pH environments(<6.0),the formed lubricating layer originated from dynamic disassembly of PVA-borax hydrogel,and brings the lubricating properties on the hydrogel surface.Moreover,the mechanical strength and lubrication properties are well promoted by introducing the carbon dots into the hydrogel,the blue sol layer can be observed more visually under the fluorescence microscope.The pH-response also exhibits well reversibility.The prepared hydrogel broadens the idea for designing pH-responsive soft materials for soft lubricating actuator or robot. 展开更多
关键词 PH-RESPONSIVE Carbon dots dynamic covalent bonding LUBRICATION
原文传递
A Dynamic Covalent Bonding-based Nanoplatform for Intracellular Co-Delivery of Protein Drugs and Chemotherapeutics with Enhanced Anti-Cancer Effect
5
作者 Sai-Nan Liu Jia-Hui Meng +3 位作者 Li-Yun Cui Hua Chen Lin-Qi Shi Ru-Jiang Ma 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第5期559-569,I0005,共12页
Efficient intracellular delivery of protein drugs is critical for protein therapy.The combination of protein drugs with chemotherapeutics represents a promising strategy in enhancing anti-cancer effect.However,co-deli... Efficient intracellular delivery of protein drugs is critical for protein therapy.The combination of protein drugs with chemotherapeutics represents a promising strategy in enhancing anti-cancer effect.However,co-delivery systems for efficient delivery of these two kinds of drugs are still lacking because of their different properties.Herein,we show a well-designed delivery system based on dynamic covalent bond for efficient intracellular co-delivery of ribonuclease A(RNase A)and doxorubicin(DOX).Two polymers,PEG-b-P(Asp-co-AspDA)and PAE-b-P(Asp-co-AspPBA),and two 2-acetylphenylboronic acid(2-APBA)-functionalized drugs,2-APBA-RNase A and 2-APBA-DOX,self-assemble into mixed-shell nanoparticles(RNase A/DOX@MNPs)via dynamic phenylboronic acid(PBA)-catechol bond between PBA and dopamine(DA)moieties.The PBA-catechol bond endows the nanoparticles with high stability and excellent stimulus-responsive drug release behavior.Under the slight acidic environment at tumor tissue,RNase A/DOX@MNPs are positively charged,promoting their endocytosis.Upon cellular uptake into endosome,further protonation of PAE chains leads to the rupture of endosomes because of the proton sponge effect and the cleavage of PBA-catechol bond promotes the release of two drugs.In cytoplasm,the high level of GSH removed the modification of 2-APBA on drugs.The restored RNase A and DOX show a synergistic and enhanced antic-cancer effect.This system may be a promising platform for intracellular co-delivery of protein drugs and chemotherapeutics. 展开更多
关键词 Drug co-delivery Combination therapy dynamic covalent bond
原文传递
Solvent-Free Synthesis of Self-Healable and Recyclable Crosslinked Polyurethane Based on Dynamic Oxime-Urethane Bonds 被引量:3
6
作者 Yuepeng Wang Lei Yang +4 位作者 Luzhi Zhang Hongfei Huang Bo Qian Shijia Gu Zhengwei You 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第11期1725-1732,I0007,共9页
Polyurethane is widely used for its versatility in design and range of performance.Self-healing and recyclable dynamic polyurethane networks have attracted extensive attention due to their potential to extend service ... Polyurethane is widely used for its versatility in design and range of performance.Self-healing and recyclable dynamic polyurethane networks have attracted extensive attention due to their potential to extend service life and ensure safety in use,as well as to promote sustainable use of resources.Developing green and environment-friendly methods to obtain this material is an interesting and challenging task,as the majority of current dynamic polyurethane networks utilize the solution polymerization method.The use of solvents makes the processes complicated,harmful to environment,and increase the cost.Poly(oxime-urethanes)(POUs)are emerging dynamic polyurethanes and show great potential in diverse fields,such as biomaterials,hot melt adhesives,and flexible electronics.In this study,we utilized the solubility properties of dimethylglyoxime in raw material poly(ethylene glycol)to prepare POUs through bulk polymerization for the first time.This method is simple,convenient and cost-efficient.Simultaneously,copper ion coordination improves POUs strength and dynamic properties,with mechanical strength up from 0.54 MPa to 1.03 MPa and self-healing recovery rate up from 85.5%to 91.8%,and activation energy down from 119.6 k J/mol to 95.4 k J/mol.To demonstrate the application of this technology,self-healing and stretchable circuits are constructed from this dynamic polyurethane network. 展开更多
关键词 POLYURETHANE dynamic covalent bonds Oxime-urethane bonds Self-healing Recycle
原文传递
Dynamic covalent nano-networks comprising antibiotics and polyphenols orchestrate bacterial drug resistance reversal and inflammation alleviation 被引量:1
7
作者 Yuanfeng Li Yin-Zi Piao +10 位作者 Hua Chen Keqing Shi Juqin Dai Siran Wang Tieli Zhou Anh-Tuan Le Yaran Wang Fan Wu Rujiang Ma Linqi Shi Yong Liu 《Bioactive Materials》 SCIE CSCD 2023年第9期288-302,共15页
New antimicrobial strategies are urgently needed to meet the challenges posed by the emergence of drug-resistant bacteria and bacterial biofilms.This work reports the facile synthesis of antimicrobial dynamic covalent... New antimicrobial strategies are urgently needed to meet the challenges posed by the emergence of drug-resistant bacteria and bacterial biofilms.This work reports the facile synthesis of antimicrobial dynamic covalent nano-networks(aDCNs)composing antibiotics bearing multiple primary amines,polyphenols,and a cross-linker acylphenylboronic acid.Mechanistically,the iminoboronate bond drives the formation of aDCNs,facilitates their stability,and renders them highly responsive to stimuli,such as low pH and high H2O2 levels.Besides,the representative A1B1C1 networks,composed of polymyxin B1(A1),2-formylphenylboronic acid(B1),and quercetin(C1),inhibit biofilm formation of drug-resistant Escherichia coli,eliminate the mature biofilms,alleviate macrophage inflammation,and minimize the side effects of free polymyxins.Excellent bacterial eradication and inflammation amelioration efficiency of A1B1C1 networks are also observed in a peritoneal infection model.The facile synthesis,excellent antimicrobial performance,and biocompatibility of these aDCNs potentiate them as a much-needed alternative in current antimicrobial pipelines. 展开更多
关键词 Biofilms dynamic covalent bonds On-demand drug release Resistance reversal BIOSAFETY
原文传递
Aggregates of fluorescent gels assembled by interfacial dynamic bonds
8
作者 Ziqing Hu Shaoyu Xu +1 位作者 Hanwei Zhang Xiaofan Ji 《Aggregate》 2023年第2期83-101,共19页
Life,defined as the specific form of substance,is an integration of aggregates at various scales,ranging from single molecules to tissues.However,these building blocks of common aggregates are usually recognized as co... Life,defined as the specific form of substance,is an integration of aggregates at various scales,ranging from single molecules to tissues.However,these building blocks of common aggregates are usually recognized as confining at the microscopic level,while there are few studies focusing on macroscopic building blocks for aggregates.Fluorescent gels,as the important macroscopic building blocks,are drawing researchers’attention on account of their extraordinary fluorescence as well as soft material properties.Inspired by nature,fluorescent gels can be aggregated through interfacial adhesion.According to the driving forces for interfacial adhesion,a series of aggregates of fluorescent gels(AFGs)was summarized,including H-bond,metal coordinations,host-guest interactions,hydrophobic interactions,electrostatic interactions,dynamic covalent bonds as well as multiple driving forces.These AFGs own dynamic assembled behaviors and rich stimuli responsiveness,which could be applied to information storage,sensing,biomedical systems,and so on.The authors anticipate this review can accelerate the development of aggregate science,especially based on macroscopic building blocks. 展开更多
关键词 aggregation-induced emission assembly dynamic covalent bond fluorescent gel interfacial adhesion noncovalent interactions
下载PDF
Dynamic Sulfur-Rich Polymers from Elemental Sulfur and Epoxides
9
作者 Ke-Xiang Chen Chen-Hui Cui +8 位作者 Zhen Li Ting Xu Hao-Qing Teng Zhi-Yuan He Yin-Zhou Guo Xiao-Qing Ming Zhi-Shen Ge Yan-Feng Zhang Tie-Jun Wang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1479-1487,I0010,共10页
Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility.Utilizating sulfur, an inexpensive industrial waste product, to synthesize dynamic... Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility.Utilizating sulfur, an inexpensive industrial waste product, to synthesize dynamic polysulfide polymers through reverse vulcanization has been a notable approach. However, this method required high temperatures and resulted in the release of unpleasant oders. In this study, we presented a robust method for the preparation of sulfur-rich polymers with dynamic polysulfide bonds from elemental sulfur and inexpensive epoxide monomers via a one-pot strategy at the mild room temperature. Different types of polysulfide molecules and polymers were synthesized by reacting various epoxide compounds with sulfur, along with the investigation of their structures and dynamic behaviors. It was noteworthy that the obatined polymers prepared from m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl)aniline and elemental sulfur exhibit multiple dynamic behaviors, including polysulfide metathesis and polysulfide-thiol exchange, enabling their rapid stress relaxation, self-healing, reprocessing and degradable properties of the cross-linked polymer. More importantly, the hydroxyl groups at the side chains from epoxide ring opening exhibited potential transesterification. This work provided a facile strategy for designing dynamic sulfur-rich polymers via a mild synthesis route. 展开更多
关键词 Elemental sulfur Sulfur-containing polymer dynamic covalent bond dynamic polymer
原文传递
Dynamic Oxime-Urethane Bonds, a Versatile Unit of High Performance Self-healing Polymers for Diverse Applications 被引量:5
10
作者 Luzhi Zhang Zhengwei You 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第10期1281-1291,I0006,共12页
Oxime-urethane bond featuring with high reversibility even at room temperature and multiple reactivity is an emerging dynamic covalent bond,and has shown great potential for self-healing polymers,which are one of the ... Oxime-urethane bond featuring with high reversibility even at room temperature and multiple reactivity is an emerging dynamic covalent bond,and has shown great potential for self-healing polymers,which are one of the most attractive development directions for next generation of polymeric materials.In this review,recent progresses on the oxime-urethane-based self-healing polymers,including their designs and applications in diverse fields such as biomedicine,flexible electronics,soft robots,3D printing,protective materials,and adhesives,are summarized,and outlooks on the future development of this field are discussed. 展开更多
关键词 SELF-HEALING dynamic covalent bonds Polyurethane covalent adaptable networks Metal coordination
原文传递
Functional polymer materials based on dynamic covalent chemistry 被引量:4
11
作者 Cheng Liu Yizheng Tan Huaping Xu 《Science China Materials》 SCIE EI CAS CSCD 2022年第8期2017-2034,共18页
In the past two decades,dynamic covalent chemistry has been greatly developed,which is mainly reflected in two aspects:1.new dynamic covalent bonds(DCBs)are continuously discovered;2.various DCBs have been introduced ... In the past two decades,dynamic covalent chemistry has been greatly developed,which is mainly reflected in two aspects:1.new dynamic covalent bonds(DCBs)are continuously discovered;2.various DCBs have been introduced into polymer materials for different functions.These functional polymer materials have brought new opportunities for sustainable development.In this review,we provide an overview of various functions endowed by DCBs in polymer materials,including self-healing,chemical recycling,and shape controlling.Particularly,we pay much attention to the three-dimensional(3D)shape reconfiguration/programming,surface patterning,and reversible actuation.In addition,we also give the current issues,challenges,and opportunities on DCBs-containing materials and point out its developing directions in the future. 展开更多
关键词 dynamic covalent bonds SELF-HEALING chemical recycling shape controlling
原文传递
Design of Tough, yet Strong, Heat-resistant PLA/PBAT Blends with Reconfigurable Shape Memory Behavior by Engineering Exchangeable Covalent Crosslinks 被引量:1
12
作者 Xiao-Wen Zhou Jing Huang +5 位作者 Xu-Hui Zhang Ting Li Yang Wang Shi-Bo Wang Bi-Hua Xia Wei-Fu Dong 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第12期1868-1878,I0007,共12页
Polylactide(PLA)has often been blended with biodegradable poly(butylene adipate-co-terephthalate)(PBAT)to improve its toughness.However,the strength and heat resistance of PLA are always sacrificed.Herein,exchangeable... Polylactide(PLA)has often been blended with biodegradable poly(butylene adipate-co-terephthalate)(PBAT)to improve its toughness.However,the strength and heat resistance of PLA are always sacrificed.Herein,exchangeable hydroxyl-ester crosslinks are constructed in PLA/PBAT blends by successively introducing a tertiary amine-containing polyol,bis-(2-hydroxyethyl)amino-tris(hydroxymethyl)methane(BTM)and 4,4’-diphenylmethane diisocyanate(MDI)via reactive blending.BTM can react with both PLA and PBAT by transesterification,generating PLA or PBAT chains with terminal or pendant hydroxyl groups,which can then react with MDI to form networks.With internal catalysis of tertiary amine moiety in BTM,transesterification between the residual hydroxyl groups and ester bonds can occur at high temperatures,endowing the PLA/PBAT network with vitrimeric properties.Owning to the transesterification and chain extension reactions with MDI between PLA and PBAT,the interfacial adhesion is greatly improved.As a result of the excellent interfacial adhesion and the network structure,the prepared PLA/PBAT blends show greatly enhanced heat resistance and toughness(more than 40 times that of PLA)while maintaining high stiffness comparable to PLA.Furthermore,the prepared PLA/PBAT blends exhibit promising reconfigurable shape memory behavior.The present work provides a new and facile way to achieve high-performance and functional biodegradable polymeric materials. 展开更多
关键词 POLYLACTIDE dynamic covalent bonds Strengthening and toughening Heat resistance Shape memory
原文传递
Cancer Therapy by Targeting Thioredoxin Reductase Based on Selenium-Containing Dynamic Covalent Bond 被引量:1
13
作者 Shuojiong Pan Jichun Yang +4 位作者 Shaobo Ji Tianyu Li Shiqian Gao Chenxing Sun Huaping Xu 《CCS Chemistry》 CAS 2020年第3期225-235,共11页
Thioredoxin Reductase(TrxR)plays a pivotal role in defending cells against reactive oxygen species(ROS)and maintaining a reduced intracellular environment.It has been discovered that TrxR is elevated significantly in ... Thioredoxin Reductase(TrxR)plays a pivotal role in defending cells against reactive oxygen species(ROS)and maintaining a reduced intracellular environment.It has been discovered that TrxR is elevated significantly in human cancer,evidenced by its association with the promotion of tumor cell proliferation,inhibiting tumor cell apoptosis,as well as enhancing tumor drug resistance.Hence,finding highly selective inhibitors of TrxR is urgently needed.Herein,we developed a selenium-containing small molecule(EbD),which had two Se–N bonds.Under reduction conditions,the two Se–N bonds reacted with Se–H bond and S–H bond in TrxR to form new Se–Se bond and Se–S bonds,respectively.Subsequently,the newly formed bonds were able to disrupt the thioredoxin(Trx)reduction catalytic cycle,and thus,inhibited the TrxR activity irreversibly,which resulted in the collapse of the antioxidant system.As a consequence,ROS levels elevated that triggered cancer cell apoptosis.This strategy,based on selenium-containing dynamic covalent bonds,provides a new avenue for cancer therapy via targeting TrxR. 展开更多
关键词 cancer therapy TrxR SELENIUM dynamic covalent bond ROS
下载PDF
Self-assembly of supra-amphiphile of azobenzene-galactopyranoside based on dynamic covalent bond and its dual responses
14
作者 Tian-Nan Wang Guang Yang +1 位作者 Li-Bin Wu Guo-Song Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第12期1740-1744,共5页
In this paper, dynamic covalent bond has been employed to construct supra-amphiphile of carbohydrate for the first time. In neutral environment, the molecule was fabricated by reacting a hydrophobic building block bea... In this paper, dynamic covalent bond has been employed to construct supra-amphiphile of carbohydrate for the first time. In neutral environment, the molecule was fabricated by reacting a hydrophobic building block bearing benzoic aldehyde with a hydrophilic building block bearing hydrazine to form a sugar-containing supra-amphiphile based on acylhydrazone bond, The obtained azobenzene- galactopyranoside (Azo-Gal) supra-amphiphile self-assembled to fibrillar structure in water, which showed dual responses to UV light and pH. 展开更多
关键词 Supra-amphiphile SELF-ASSEMBLY dynamic covalent bond Carbohydrate Dual responses
原文传递
Molecular design of recyclable thermosetting polyimide and its composite with excellent mechanical and tribological properties
15
作者 Xiaoyue WANG Zenghui YANG +3 位作者 Tingmei WANG Qihua WANG Xinrui ZHANG Song LI 《Friction》 SCIE EI CAS CSCD 2024年第3期452-461,共10页
Recyclability of thermosetting polymers and their composites is a challenge for alleviating environmental pollution and resource waste.In this study,solvent-recyclable thermosetting polyimide(PI)and its composite were... Recyclability of thermosetting polymers and their composites is a challenge for alleviating environmental pollution and resource waste.In this study,solvent-recyclable thermosetting polyimide(PI)and its composite were successfully synthesized.The tensile strength,elongation at break,and Young’s modulus of PI are 108.70±7.29 MPa,19.35%±3.89%,and 2336.42±128.00 MPa,respectively.The addition of reduced graphene oxide(RGO)not only enhances the mechanical properties of PI but also endows it with excellent tribological properties.The PI illustrates a high recycling efficiency of 94.15%,but the recycled composite exhibits inferior mechanical properties.The recycling and utilization of PI and its composite are realized through imine bonds(-C=N),which provides new guidance for solving the problem of environmental pollution and resource waste and is potential application in the field of sustainable tribology. 展开更多
关键词 thermosetting polyimide(PI) RECYCLABILITY dynamic covalent bonds friction and wear polymer composites
原文传递
Light-controlled switchable underwater adhesive
16
作者 Song Yang Yanfei Ma +7 位作者 Chenxi Qin Zhizhi Zhang Jianqing Yu Xiaowei Pei Bo Yu Wenbo Sheng Feng Zhou Weimin Liu 《SmartMat》 2024年第2期115-123,共9页
Despite extensive efforts in designing and preparing switchable underwater adhesives,it is not easy to regulate the underwater adhesion strength locally and remotely.Here,we design and synthesize photoreversible copol... Despite extensive efforts in designing and preparing switchable underwater adhesives,it is not easy to regulate the underwater adhesion strength locally and remotely.Here,we design and synthesize photoreversible copolymer of poly[dopamine methacrylamide-co-methoxyethyl-acrylate-co-7-(2-methacryloyloxyethoxy)-4-methylcoumarin].Due to the dynamic formation and breaking of chemical crosslinking networks within the smart adhesives,the material shows widely tunable adhesion strength from∼150 to∼450 kPa and long-range reversible maneuverability under orthogonal 254 and 365 nm ultraviolet light stimulation via the coumarin dimerization and cycloreversion.Moreover,the adhesive exhibits good circulation performance and stability in an acid–base environment.It also demonstrated that the bolt can be coated with the smart adhesive material for on-demand bonding.This design principle opens the door to the development of remotely controllable high-performance smart underwater adhesives. 展开更多
关键词 dynamic covalent bonds PHOTORESPONSIVE reversible adhesion switchable adhesion underwater adhesion
原文传递
An interfacial robust and entire self-healing ionogel-elastomer hybrid for elastic electronics enables discretionary assembly and reconfiguration
17
作者 Lei Yang Lijie Sun +2 位作者 Hongfei Huang Rasoul Esmaeely Neisiany Zhengwei You 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第4期1316-1323,共8页
Inspired by the multi-layer architecture of mammal skins,interfacial robust,stretchable,and entirely healable gel-elastomer hybrids hold great potential in diverse fields including biomedical devices,wearable electric... Inspired by the multi-layer architecture of mammal skins,interfacial robust,stretchable,and entirely healable gel-elastomer hybrids hold great potential in diverse fields including biomedical devices,wearable electrical devices,and soft robotics.However,existing gel-elastomer hybrids have numerous limitations including low interfacial bonding toughness,complex and time-consuming preparation process,unhealable,and non-reconfiguration.Herein,we propose a simple and general chemical strategy through the interfacial dynamic bonding between gel and elastomer to simultaneously address the abovementioned obstacles.Dynamic covalent bonds readily and repeatably covalent bonding ionogel and elastomer(interfacial toughness:390 J m^(-2)),endowed the hybrids with entire self-healing features like skin and enabled discretionary assembly and reconfiguration.Moreover,this strategy resolved the troublesome contradiction between interfacial stability and reconfiguration.Taking advantage of the aforementioned features,we readily constructed a multi-module,self-healing,self-powered,and realtime monitoring of personal status integrated elastic electronics,which could simply reconfigure the output signal of elastic electronics into an input signal of the devices-braille keyboard. 展开更多
关键词 ionogel ELASTOMER interface bonding SELF-HEALING dynamic covalent bond
原文传递
Catalyst-free and Reprocessable Aromatic Polydithiourethanes
18
作者 Bo Yang Hai-Jun Feng +3 位作者 Tian-Tian Ni Xiao-Rui Zhou Tao Xie Ning Zheng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1435-1441,I0007,共8页
The incorporation of dynamic covalent bonds into thermosets facilitates the reprocessing of polymer networks,thereby meeting the sustainable requirements for polymer recycling.However,the mechanical properties of many... The incorporation of dynamic covalent bonds into thermosets facilitates the reprocessing of polymer networks,thereby meeting the sustainable requirements for polymer recycling.However,the mechanical properties of many materials often decline significantly upon reprocessing due to side reactions caused by harsh processing conditions.In this work,we find that the aromatic dithiocarbamate bond can undergo dissociation under mild conditions without the need for a catalyst,enabling the efficient reprocessing of the corresponding polydithiourethane.As a consequence,the mechanical properties of the polydithiourethane can be largely preserved after reprocessing.The discovery of this dynamic chemistry is anticipated to broaden the potential for material design in dynamic covalent polymer networks. 展开更多
关键词 REPROCESSING Polydithiourethane dynamic covalent bond
原文传递
"Solid-Liquid" Vitrimers Based on Dynamic Boronic Ester Networks 被引量:3
19
作者 Sheng Wang Lu-Lu Xue +1 位作者 Xiao-Zhuang Zhou Jia-Xi Cui 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第10期1292-1298,I0006,共8页
The"solid-liquid"behavior of vitrimers have not been systematically investigated.Herein,a series of"solid-liquid"vitrimers bearing varying contents of dynamic boronic ester bonds were synthesized v... The"solid-liquid"behavior of vitrimers have not been systematically investigated.Herein,a series of"solid-liquid"vitrimers bearing varying contents of dynamic boronic ester bonds were synthesized via thiol-ene click reactions.These vitrimers allow for flexibile modulation of their network structures and thus show a range of intriguing properties including high stretchability,flexible transition from elasticity to plasticity,strong strain rate dependence,and solid-liquid performance.The dynamic association rate of boronic ester bonds within these vitrimers could be apparently accelerated via increasing the content of boronic ester,which could be used to shape-program the flat vitrimer films into various complex 3D structures just with external force.Materials with such versatile dynamic behavior may open up a range of new applications. 展开更多
关键词 SOLID-LIQUID dynamic covalent bond Boronic ester bond Strain-rate dependent High stretchability
原文传递
Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D2h and C2 Building Blocks
20
作者 ZHENG Xuhan ZHANG Lin +4 位作者 XIE Chenxiao WANG Hui LIU Hui PAN Qingyan ZHAO Yingjie 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2022年第2期639-642,共4页
The isomerization of covalent organic frameworks(COFs) materials is still a mysterious and attractive topic. Diversified monomer structures are still urgently needed to explore the in-depth mechanism of isomerization ... The isomerization of covalent organic frameworks(COFs) materials is still a mysterious and attractive topic. Diversified monomer structures are still urgently needed to explore the in-depth mechanism of isomerization in these special COFs. This work provides a new D2h monomer for the construction of [D2h+C2] 2D COFs isomers. A new D2h monomer adopted here was proven to tend to form a single pore framework structure. 展开更多
关键词 covalent organic framework ISOMERIZATION KAGOME dynamic covalent bond
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部