期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Capacity Configuration of Energy Storage Systems for Echelon Utilization Based on Accelerated Life Test in Microgrids
1
作者 Ning Yan Xiangjun Li +2 位作者 Shaohua Ma Haichuan Zhao Bo Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期1139-1150,共12页
Retired power battery construction energy storage systems(ESSs)for echelon utilization can not only extend the remaining capacity value of the battery,and decrease environmental pollution,but also reduce the initial c... Retired power battery construction energy storage systems(ESSs)for echelon utilization can not only extend the remaining capacity value of the battery,and decrease environmental pollution,but also reduce the initial cost of energy storage systems.In this paper,an ESS constructed of retired power batteries for echelon utilization in microgrids(MGs)is considered.Firstly,considering the influence of different discharge depths on the battery life cycle,the correlation equation between the state of charge(SOC)and the state of health(SOH)is established.Secondly,the accelerated life test method,based on the inverse power law coefficient equation,is proposed,and it is used to evaluate the reliability of the ESS.Finally,according to the SOC characteristics,the dynamic security margin of the ESS is established.The life cycle cost,supply-demand balance and ESS balanced control are comprehensively considered,and the location and capacity of energy storage in MGs are determined.It is simulated using the IEEE-RTS 24 node system;the results show that the investment cost of the ESS is reduced and the operational life is prolonged. 展开更多
关键词 ESS echelon utilization accelerated life test balanced control capacity configuration
原文传递
Nonlinear health evaluation for lithium-ion battery within full-lifespan 被引量:9
2
作者 Heze You Jiangong Zhu +10 位作者 Xueyuan Wang Bo Jiang Hao Sun Xinhua Liu Xuezhe Wei Guangshuai Han Shicong Ding Hanqing Yu Weihan Li Dirk Uwe Sauer Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期333-341,I0010,共10页
Lithium-ion batteries(LIBs), as the first choice for green batteries, have been widely used in energy storage, electric vehicles, 3C devices, and other related fields, and will have greater application prospects in th... Lithium-ion batteries(LIBs), as the first choice for green batteries, have been widely used in energy storage, electric vehicles, 3C devices, and other related fields, and will have greater application prospects in the future. However, one of the obstacles hindering the future development of battery technology is how to accurately evaluate and monitor battery health, which affects the entire lifespan of battery use. It is not enough to assess battery health comprehensively through the state of health(SoH) alone, especially when nonlinear aging occurs in onboard applications. Here, for the first time, we propose a brand-new health evaluation indicator—state of nonlinear aging(SoNA) to explain the nonlinear aging phenomenon that occurs during the battery use, and also design a knee-point identification method and two SoNA quantitative methods. We apply our health evaluation indicator to build a complete LIB full-lifespan grading evaluation system and a ground-to-cloud service framework, which integrates multi-scenario data collection, multi-dimensional data-based grading evaluation, and cloud management functions. Our works fill the gap in the LIBs’ health evaluation of nonlinear aging, which is of great significance for the health and safety evaluation of LIBs in the field of echelon utilization such as vehicles and energy storage. In addition, this comprehensive evaluation system and service framework are expected to be extended to other battery material systems other than LIBs, yet guiding the design of new energy ecosystem. 展开更多
关键词 Lithium-ion battery State of nonlinear aging Knee-point Grading evaluation system echelon utilization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部