This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integ...This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.展开更多
An elasto-viscoplastic consistent tangent operator (CTO) concept-based implicit algorithm for nonlinear boundary element methods is presented. Both kinematic and isotropic strain hardening are considered. The elasto-v...An elasto-viscoplastic consistent tangent operator (CTO) concept-based implicit algorithm for nonlinear boundary element methods is presented. Both kinematic and isotropic strain hardening are considered. The elasto-viscoplastic radial return algorithm (RRA) and the elasto-viscoplastic CTO and its related scheme are developed. In addition, the limit cases (e.g. elastoplastic problem) of vis-coplastic RRA and CTO are discussed. Finally, numerical examples, which are compared with the latest FEM results of Ibrahimbegovic et al. and ABAQUS results, are provided.展开更多
Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated ...Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated firstly in an elastic-viscoplastic polycrystals. The grain interior's material properties (e.g. strain rate sensitivity) characterize the competitions between plastic and cohesive energy dissipation mechanisms. The higher the strain rate sensitivity is, the larger amount of the external work is transformed into plastic dissipation energy than into cohesive energy, which delays the cohesive zone rupturing. With the strain rate sensitivity decreased, the material property tends to approach the elastic-plastic responses. In this case, the plastic dissipation energy decreases and the cohesive dissipation energy increases which accelerates the cohesive zones debonding. Increasing the cohesive strength or the critical separation displacement will reduce the stress triaxiality at grain interiors and grain boundaries. Enhancing the cohesive zones ductility can improve the matrix materials resistance to void damage.展开更多
ln order to raise the tractive efficiency of a boat-typc tractor further, according to a point of view about reducing energy consumption by reducing the volume of thc blade cavity, an idea of four-footed walkiag boat-...ln order to raise the tractive efficiency of a boat-typc tractor further, according to a point of view about reducing energy consumption by reducing the volume of thc blade cavity, an idea of four-footed walkiag boat-type tractor is put forward. and a walking device with two feet and four small wheels is designed and manufactured. It can move on the rails of a paddy soil bin to simulate the tractive performance of a boat-type tractor in thc paddy field. Kinematics and dynam- ics of the walking device is analysed. Because it can ensure that the blade foot enters and leaves the soil vertically, and eliminates the functions of the soil compression and pick by the blade entirely, so the volume of the blade cavity can be reduced to a minimum and the efficiency of the walking sys- tem has been rasied considerably. Thus, it is feasible to adopt a four-footed walking mechanism in the boat-type tractor.展开更多
基金The project supported by National Natural Science Foundation of China(9713008)Zhejiang Natural Science Foundation Special Funds No. RC.9601
文摘This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.
文摘An elasto-viscoplastic consistent tangent operator (CTO) concept-based implicit algorithm for nonlinear boundary element methods is presented. Both kinematic and isotropic strain hardening are considered. The elasto-viscoplastic radial return algorithm (RRA) and the elasto-viscoplastic CTO and its related scheme are developed. In addition, the limit cases (e.g. elastoplastic problem) of vis-coplastic RRA and CTO are discussed. Finally, numerical examples, which are compared with the latest FEM results of Ibrahimbegovic et al. and ABAQUS results, are provided.
基金Project supported by the National Natural Science Foundation of China (No.50371042) the Post Doctoral Science Foundation of China (No.20040350031)
文摘Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated firstly in an elastic-viscoplastic polycrystals. The grain interior's material properties (e.g. strain rate sensitivity) characterize the competitions between plastic and cohesive energy dissipation mechanisms. The higher the strain rate sensitivity is, the larger amount of the external work is transformed into plastic dissipation energy than into cohesive energy, which delays the cohesive zone rupturing. With the strain rate sensitivity decreased, the material property tends to approach the elastic-plastic responses. In this case, the plastic dissipation energy decreases and the cohesive dissipation energy increases which accelerates the cohesive zones debonding. Increasing the cohesive strength or the critical separation displacement will reduce the stress triaxiality at grain interiors and grain boundaries. Enhancing the cohesive zones ductility can improve the matrix materials resistance to void damage.
文摘ln order to raise the tractive efficiency of a boat-typc tractor further, according to a point of view about reducing energy consumption by reducing the volume of thc blade cavity, an idea of four-footed walkiag boat-type tractor is put forward. and a walking device with two feet and four small wheels is designed and manufactured. It can move on the rails of a paddy soil bin to simulate the tractive performance of a boat-type tractor in thc paddy field. Kinematics and dynam- ics of the walking device is analysed. Because it can ensure that the blade foot enters and leaves the soil vertically, and eliminates the functions of the soil compression and pick by the blade entirely, so the volume of the blade cavity can be reduced to a minimum and the efficiency of the walking sys- tem has been rasied considerably. Thus, it is feasible to adopt a four-footed walking mechanism in the boat-type tractor.