A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni...A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM.展开更多
The El Niño-Southern Oscillation (ENSO) is a significant climate phenomenon with far-reaching impacts on global weather patterns, ecosystems, and economies. This study aims to enhance ENSO forecasting with the Ex...The El Niño-Southern Oscillation (ENSO) is a significant climate phenomenon with far-reaching impacts on global weather patterns, ecosystems, and economies. This study aims to enhance ENSO forecasting with the Extended Reconstruction Sea Surface Temperature v5 (ERSSTv5) climate model. The M-band discrete wavelet transforms (DWT) are utilized to capture multi-scale temporal and spatial features effectively. Long-short term memory (LSTM) autoencoders are also used to capture significant spatial and temporal patterns in sea surface temperature (SST) anomaly data. Deep learning techniques such as the convolutional neural networks (CNN) are used with non-image and image time series data. We also employ parallel computing in a various support vector regression (SVR) approximators to enhance accuracy. Preliminary results indicate that this hybrid model effectively identifies key precursors and patterns associated with El Niño events, surpassing traditional forecasting methods. Results of the hybrid model produce a correlation of 0.93 in 4-month lagged forecasting of the Oceanic Niño Index (ONI)—indicative of high success rate of the model. Future work will focus on evaluating the model’s performance using additional reanalysis datasets and other methods of deep learning to further refine its robustness and applicability. We propose wavelet-based deep learning models which have potential to shine a light on achieving United Nations’ 2030 Agenda for Sustainable Development’s goal 13: “Climate Action”, as an innovation with potential in improving time series image forecasting in all fields.展开更多
On March 1,CEN and CENELEC’s Director General,Elena Santiago Cid,received from the hands of Maive Rute,the European Commission’s Chief Standardization Officer,the new Roadmap on hydrogen standardization.CEN and CENE...On March 1,CEN and CENELEC’s Director General,Elena Santiago Cid,received from the hands of Maive Rute,the European Commission’s Chief Standardization Officer,the new Roadmap on hydrogen standardization.CEN and CENELEC welcome the publication of this important document and are committed to collaborating to the roll out of large-scale hydrogen solutions across the EU.展开更多
基金supported by the National Natural Science Foundation of China(NSFCGrant No.42275061)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Laoshan Laboratory(Grant No.LSKJ202202404)the NSFC(Grant No.42030410)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology.
文摘A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM.
文摘The El Niño-Southern Oscillation (ENSO) is a significant climate phenomenon with far-reaching impacts on global weather patterns, ecosystems, and economies. This study aims to enhance ENSO forecasting with the Extended Reconstruction Sea Surface Temperature v5 (ERSSTv5) climate model. The M-band discrete wavelet transforms (DWT) are utilized to capture multi-scale temporal and spatial features effectively. Long-short term memory (LSTM) autoencoders are also used to capture significant spatial and temporal patterns in sea surface temperature (SST) anomaly data. Deep learning techniques such as the convolutional neural networks (CNN) are used with non-image and image time series data. We also employ parallel computing in a various support vector regression (SVR) approximators to enhance accuracy. Preliminary results indicate that this hybrid model effectively identifies key precursors and patterns associated with El Niño events, surpassing traditional forecasting methods. Results of the hybrid model produce a correlation of 0.93 in 4-month lagged forecasting of the Oceanic Niño Index (ONI)—indicative of high success rate of the model. Future work will focus on evaluating the model’s performance using additional reanalysis datasets and other methods of deep learning to further refine its robustness and applicability. We propose wavelet-based deep learning models which have potential to shine a light on achieving United Nations’ 2030 Agenda for Sustainable Development’s goal 13: “Climate Action”, as an innovation with potential in improving time series image forecasting in all fields.
文摘On March 1,CEN and CENELEC’s Director General,Elena Santiago Cid,received from the hands of Maive Rute,the European Commission’s Chief Standardization Officer,the new Roadmap on hydrogen standardization.CEN and CENELEC welcome the publication of this important document and are committed to collaborating to the roll out of large-scale hydrogen solutions across the EU.