Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail th...Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail the fabrication of conductive domain walls in x-cut congruent thin-film lithium niobate(TFLN)using an electrical-field poling technique.The ferroelectric domain structures can be controlled through the applied electrical field and applied pulse numbers,and the domain inversion process is related to the conduction characteristics of the domain walls.The domain structures in TFLN are revealed using confocal second-harmonic microscopy and piezoresponse force microscopy.The results provide further directions for the development and application of conductive domain walls in TFLN.展开更多
Composite-type piezoelectric nanogenerator(PENG)can potentially provide power to the flexible electronics devices by harvesting the mechanical energy.The electricity output of the PENG is not entirely excavated until ...Composite-type piezoelectric nanogenerator(PENG)can potentially provide power to the flexible electronics devices by harvesting the mechanical energy.The electricity output of the PENG is not entirely excavated until now because the polarization dipoles are not sufficiently aligned during the high-voltage poling process.In this study,some Ag particles are attached on the(K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.86)Ta_(0.06)Sb_(0.08))O_(3)(KNN)piezoelectric particles and then they are mixed with multi-walled carbon nanotubes and polydimethylsiloxane to fabricate the PENG device.The Ag particles can reduce the optimal poling electric field from 10 kV/mm down to 5 kV/mm.The PENG device with Ag particles poled at 5 kV/mm can generate the highest open-circuit voltage of 282 V,short-circuit voltage of 32.2 mA,and maximum instantaneous power of 3.5mW under the external mechanical stress of 10 kPa without timedependent degradation(only 27.9 V and 2.6 mA for the pure KNN-based PENG poled at 10 kV/mm).These are much better than previously reported composite-type PENG.The electrical energy generated from the PENG(20mm×40 mm)can light up 40 white light emitting diodes instantaneously without any storage unit during the stomping stage.展开更多
文摘Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail the fabrication of conductive domain walls in x-cut congruent thin-film lithium niobate(TFLN)using an electrical-field poling technique.The ferroelectric domain structures can be controlled through the applied electrical field and applied pulse numbers,and the domain inversion process is related to the conduction characteristics of the domain walls.The domain structures in TFLN are revealed using confocal second-harmonic microscopy and piezoresponse force microscopy.The results provide further directions for the development and application of conductive domain walls in TFLN.
基金supported by the China Postdoctoral Science Foundation(Grant No.2017M612177)National Natural Science Foundation of China(Grant Nos.51702119,51702122)Postdoctoral Science Foundation from University of Jinan.
文摘Composite-type piezoelectric nanogenerator(PENG)can potentially provide power to the flexible electronics devices by harvesting the mechanical energy.The electricity output of the PENG is not entirely excavated until now because the polarization dipoles are not sufficiently aligned during the high-voltage poling process.In this study,some Ag particles are attached on the(K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.86)Ta_(0.06)Sb_(0.08))O_(3)(KNN)piezoelectric particles and then they are mixed with multi-walled carbon nanotubes and polydimethylsiloxane to fabricate the PENG device.The Ag particles can reduce the optimal poling electric field from 10 kV/mm down to 5 kV/mm.The PENG device with Ag particles poled at 5 kV/mm can generate the highest open-circuit voltage of 282 V,short-circuit voltage of 32.2 mA,and maximum instantaneous power of 3.5mW under the external mechanical stress of 10 kPa without timedependent degradation(only 27.9 V and 2.6 mA for the pure KNN-based PENG poled at 10 kV/mm).These are much better than previously reported composite-type PENG.The electrical energy generated from the PENG(20mm×40 mm)can light up 40 white light emitting diodes instantaneously without any storage unit during the stomping stage.