A new quantum optical mechanism to realize simultaneously negative electric permittivity and magnetic permeability is suggested. In order to obtain a negative permeability, we choose a proper atomic configuration that...A new quantum optical mechanism to realize simultaneously negative electric permittivity and magnetic permeability is suggested. In order to obtain a negative permeability, we choose a proper atomic configuration that can dramatically enhance the contribution of the magnetic-dipole allowed transition via the atomic phase coherence. It is shown that the atomic system chosen with proper optical parameters can give rise to striking electromagnetic responses (leading to a negative refractive index) and that the atomic vapour becomes a left-handed medium in an optical frequency band. Differing from the previous schemes of artificial composite metamaterials (based on classical electromagnetic theory) to achieve the left-handed materials, which consist of anisotropic millimetre-scale composite structure units, the left-handed atomic vapour presented here is isotropic and homogeneous at the atomic-scale level. Such an advantage may be valuable in realizing the superlens (and hence perfect image) with left-handed atomic vapour.展开更多
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2004CB719800), partially by the National Natural Science Foundation of China (Grant No 10604046) and the Chinese Doctoral Science Foundation.
文摘A new quantum optical mechanism to realize simultaneously negative electric permittivity and magnetic permeability is suggested. In order to obtain a negative permeability, we choose a proper atomic configuration that can dramatically enhance the contribution of the magnetic-dipole allowed transition via the atomic phase coherence. It is shown that the atomic system chosen with proper optical parameters can give rise to striking electromagnetic responses (leading to a negative refractive index) and that the atomic vapour becomes a left-handed medium in an optical frequency band. Differing from the previous schemes of artificial composite metamaterials (based on classical electromagnetic theory) to achieve the left-handed materials, which consist of anisotropic millimetre-scale composite structure units, the left-handed atomic vapour presented here is isotropic and homogeneous at the atomic-scale level. Such an advantage may be valuable in realizing the superlens (and hence perfect image) with left-handed atomic vapour.