Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-qual...Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.展开更多
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction...There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.展开更多
The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist...The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.展开更多
Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and custo...Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and customer perspectives.This paper proposes a multi-objective electricity consumption optimization strategy considering the correlation between equipment and electricity consumption.It constructs a multi-objective electricity consumption optimization model that considers the correlation between equipment and electricity consumption to maximize economy and comfort.The results show that the proposed method can accurately assess the potential for electricity consumption optimization and obtain an optimal multi-objective electricity consumption strategy based on customers’actual electricity consumption demand.展开更多
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for...The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.展开更多
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a...By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal...Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale.展开更多
In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occ...In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.展开更多
The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)...The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)criterion,enabled by the properties of random fluctuations and intra-grid consistency.In essence,this is a task of matching a short random sequence within a long reference,whose accuracy is mainly concerned with whether this match could be uniquely correct.In this paper,we comprehensively analyze the factors affecting the reliability of ENF matching,including the length of test recording,length of reference,temporal resolution,and Signal-to-Noise Ratio(SNR).For synthetic analysis,we incorporate the first-order AutoRegressive(AR)ENF model and propose an efficient Time-Frequency Domain noisy ENF synthesis method.Then,the reliability analysis schemes for both synthetic and real-world data are respectively proposed.Through a comprehensive study,we quantitatively reveal that while the SNR is an important external factor to determine whether timestamp verification is viable,the length of test recording is the most important inherent factor,followed by the length of reference.However,the temporal resolution has little impact on performance.Finally,a practical workflow of the ENF-based audio timestamp verification system is proposed,incorporating the discovered results.展开更多
Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on d...Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data.展开更多
Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn...Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.展开更多
With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and conseque...With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and consequently lays foundation for operating condition on-line analysis of distribution network. In this paper, a modified back/forward sweep method, which directly uses real-time electricity consumption data acquired from the centralized meter reading system, is proposedto realize voltage analysis based on 24-hour electricity consumption data of a typical transformer district. Furthermore, the calculated line losses are verified through data collected from the energy metering of the distribution transformer, illustrating that the proposed method can be applied in analyzing voltage level and discovering unknown energy losses, which will lay foundation for on-line analysis, calculation and monitoring of power distribution network.展开更多
With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ven...With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ventilation and air conditioning(HVAC),little research has been conducted on the relationship between student’s behavior,campus buildings,and their subsystems.Using classical seasonal decomposition,hierarchical clustering,and apriori algorithm,this paper aims to provide an empirical model for consumption data in campus library.Smart meter data from a library in Beijing,China,is adopted in this paper.Building electricity consumption patterns are investigated on an hourly/daily/monthly basis.According to the monthly analysis,electricity consumption peaks each year around June and December due to teaching programs,social exams,and outdoor temperatures.Hourly data analysis revealed a relatively stable consumption pattern.It shows three different types of daily load profiles.Daily data analysis demonstrated a high relationship between HVAC consumption and building total consumption,with a lift value of 5.9.Furthermore,links between temperature and subsystems were also discovered.Through a case study of library,this study provides a unique insight into campus electricity use.The results could help to develop operational strategies for campus facilities.展开更多
The increasing emergence of the time-series single-cell RNA sequencing(scRNA-seq)data,inferring developmental trajectory by connecting transcriptome similar cell states(i.e.,cell types or clusters)has become a major c...The increasing emergence of the time-series single-cell RNA sequencing(scRNA-seq)data,inferring developmental trajectory by connecting transcriptome similar cell states(i.e.,cell types or clusters)has become a major challenge.Most existing computational methods are designed for individual cells and do not take into account the available time series information.We present IDTI based on the Increment of Diversity for Trajectory Inference,which combines time series information and the minimum increment of diversity method to infer cell state trajectory of time-series scRNA-seq data.We apply IDTI to simulated and three real diverse tissue development datasets,and compare it with six other commonly used trajectory inference methods in terms of topology similarity and branching accuracy.The results have shown that the IDTI method accurately constructs the cell state trajectory without the requirement of starting cells.In the performance test,we further demonstrate that IDTI has the advantages of high accuracy and strong robustness.展开更多
Recently,electric vehicles(EVs)have been widely used under the call of green travel and environmental protection,and diverse requirements for charging are also increasing gradually.In order to ensure the authenticity ...Recently,electric vehicles(EVs)have been widely used under the call of green travel and environmental protection,and diverse requirements for charging are also increasing gradually.In order to ensure the authenticity and privacy of charging information interaction,blockchain technology is proposed and applied in charging station billing systems.However,there are some issues in blockchain itself,including lower computing efficiency of the nodes and higher energy consumption in the consensus process.To handle the above issues,in this paper,combining blockchain and mobile edge computing(MEC),we develop a reliable billing data transmission scheme to improve the computing capacity of nodes and reduce the energy consumption of the consensus process.By jointly optimizing the primary and replica nodes offloading decisions,block size and block interval,the transaction throughput of the blockchain system is maximized,as well as the latency and energy consumption of the system are minimized.Moreover,we formulate the joint optimization problem as a Markov decision process(MDP).To tackle the dynamic and continuity of the system state,the reinforcement learning(RL)is introduced to solve the MDP problem.Finally,simulation results demonstrate that the performance improvement of the proposed scheme through comparison with other existing schemes.展开更多
Data loss or distortion causes adverse effects on the accuracy and stability of the thunderstorm point charge localization.To solve this problem,we propose a data complementary method based on the atmospheric electric...Data loss or distortion causes adverse effects on the accuracy and stability of the thunderstorm point charge localization.To solve this problem,we propose a data complementary method based on the atmospheric electric field apparatus array group.The electric field component measurement model of the atmospheric electric field apparatus is established,and the orientation parameters of the thunderstorm point charge are defined.Based on the mirror method,the thunderstorm point charge coordinates are obtained by using the potential distribution formulas.To test the validity of the basic algorithm,the electric field component measurement error and the localization accuracy are studied.Besides the azimuth angle and the elevation angle,the localization parameters also include the distance from the apparatus to the thunderstorm cloud.Based on a primary electric field apparatus,we establish the array group of apparatuses.Based on this,the data measured by each apparatus is complementarily processed to regain the thunderstorm point charge position.The results show that,compared with the radar map data,this method can accurately reflect the location of the thunderstorm point charge,and has a better localization effect.Additionally,several observation results during thunderstorm weather have been presented.展开更多
With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly sub...With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly submergence,which shows that the usage patterns of electricity thieves may not always deviate from those of normal users,the performance of the existing usage-pattern-based method could be affected.In addition,the detection results of some unsupervised learning algorithm models are abnormal degrees rather than“0-1”to ascertain whether electricity theft has occurred.The detection with fixed threshold value may lead to deviation and would not be sufficiently flexible to handle the detection for different scenes and users.To address these issues,this study proposes a new electricity theft detection method based on load shape dictionary of users.A corresponding strategy for tunable threshold is proposed to optimize the detection effect of electricity theft,and the efficacy and applicability of the proposed adaptive electricity theft detection method were verified from numerical experiments.展开更多
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ...As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.展开更多
基金This research was funded by the National Nature Sciences Foundation of China(Grant No.42250410321).
文摘Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.
文摘There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.
基金This work was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0016977,The Establishment Project of Industry-University Fusion District).
文摘The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.
文摘Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and customer perspectives.This paper proposes a multi-objective electricity consumption optimization strategy considering the correlation between equipment and electricity consumption.It constructs a multi-objective electricity consumption optimization model that considers the correlation between equipment and electricity consumption to maximize economy and comfort.The results show that the proposed method can accurately assess the potential for electricity consumption optimization and obtain an optimal multi-objective electricity consumption strategy based on customers’actual electricity consumption demand.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2402002)Beijing Natural Science Foundation of China (Grant No.L223013)。
文摘The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
基金supported by the open research fund of the Key Laboratory of Agri-informatics,Ministry of Agriculture and the fund of Outstanding Agricultural Researcher,Ministry of Agriculture,China
文摘By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金the Frontier Program of the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale.
文摘In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.
基金funded by National Natural Science Foundation of China(No.62272347,62072343,and 61802284)National Key Research Development Program of China(No.2019QY(Y)0206).
文摘The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)criterion,enabled by the properties of random fluctuations and intra-grid consistency.In essence,this is a task of matching a short random sequence within a long reference,whose accuracy is mainly concerned with whether this match could be uniquely correct.In this paper,we comprehensively analyze the factors affecting the reliability of ENF matching,including the length of test recording,length of reference,temporal resolution,and Signal-to-Noise Ratio(SNR).For synthetic analysis,we incorporate the first-order AutoRegressive(AR)ENF model and propose an efficient Time-Frequency Domain noisy ENF synthesis method.Then,the reliability analysis schemes for both synthetic and real-world data are respectively proposed.Through a comprehensive study,we quantitatively reveal that while the SNR is an important external factor to determine whether timestamp verification is viable,the length of test recording is the most important inherent factor,followed by the length of reference.However,the temporal resolution has little impact on performance.Finally,a practical workflow of the ENF-based audio timestamp verification system is proposed,incorporating the discovered results.
文摘Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data.
基金funded by a science and technology project of State Grid Corporation of China“Comparative Analysis of Long-Term Measurement and Prediction of the Ground Synthetic Electric Field of±800 kV DC Transmission Line”(GYW11201907738)Paulo R.F.Rocha acknowledges the support and funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Program(Grant Agreement No.947897).
文摘Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.
文摘With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and consequently lays foundation for operating condition on-line analysis of distribution network. In this paper, a modified back/forward sweep method, which directly uses real-time electricity consumption data acquired from the centralized meter reading system, is proposedto realize voltage analysis based on 24-hour electricity consumption data of a typical transformer district. Furthermore, the calculated line losses are verified through data collected from the energy metering of the distribution transformer, illustrating that the proposed method can be applied in analyzing voltage level and discovering unknown energy losses, which will lay foundation for on-line analysis, calculation and monitoring of power distribution network.
基金in part by the Doctoral Scientific Research Foundationof Beijing University of Civil Engineering and Architecture under Grant ZF15054in part by theFundamental Research Funds for Beijing University of Civil Engineering and Architecture underGrant X18066in part by the 2021 BUCEA Post Graduate Innovation Project under GrantPG2021011.
文摘With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ventilation and air conditioning(HVAC),little research has been conducted on the relationship between student’s behavior,campus buildings,and their subsystems.Using classical seasonal decomposition,hierarchical clustering,and apriori algorithm,this paper aims to provide an empirical model for consumption data in campus library.Smart meter data from a library in Beijing,China,is adopted in this paper.Building electricity consumption patterns are investigated on an hourly/daily/monthly basis.According to the monthly analysis,electricity consumption peaks each year around June and December due to teaching programs,social exams,and outdoor temperatures.Hourly data analysis revealed a relatively stable consumption pattern.It shows three different types of daily load profiles.Daily data analysis demonstrated a high relationship between HVAC consumption and building total consumption,with a lift value of 5.9.Furthermore,links between temperature and subsystems were also discovered.Through a case study of library,this study provides a unique insight into campus electricity use.The results could help to develop operational strategies for campus facilities.
基金the National Natural Science Foundation of China(62061034,62171241)the key technology research program of Inner Mongolia Autonomous Region(2021GG0398)the Science and Technology Leading Talent Team in Inner Mongolia Autonomous Region(2022LJRC0009).
文摘The increasing emergence of the time-series single-cell RNA sequencing(scRNA-seq)data,inferring developmental trajectory by connecting transcriptome similar cell states(i.e.,cell types or clusters)has become a major challenge.Most existing computational methods are designed for individual cells and do not take into account the available time series information.We present IDTI based on the Increment of Diversity for Trajectory Inference,which combines time series information and the minimum increment of diversity method to infer cell state trajectory of time-series scRNA-seq data.We apply IDTI to simulated and three real diverse tissue development datasets,and compare it with six other commonly used trajectory inference methods in terms of topology similarity and branching accuracy.The results have shown that the IDTI method accurately constructs the cell state trajectory without the requirement of starting cells.In the performance test,we further demonstrate that IDTI has the advantages of high accuracy and strong robustness.
基金in part by the National Natural Science Foundation of China under Grant 61901011in part by the Foundation of Beijing Municipal Commission of Education under Grant KM202110005021 and KM202010005017.
文摘Recently,electric vehicles(EVs)have been widely used under the call of green travel and environmental protection,and diverse requirements for charging are also increasing gradually.In order to ensure the authenticity and privacy of charging information interaction,blockchain technology is proposed and applied in charging station billing systems.However,there are some issues in blockchain itself,including lower computing efficiency of the nodes and higher energy consumption in the consensus process.To handle the above issues,in this paper,combining blockchain and mobile edge computing(MEC),we develop a reliable billing data transmission scheme to improve the computing capacity of nodes and reduce the energy consumption of the consensus process.By jointly optimizing the primary and replica nodes offloading decisions,block size and block interval,the transaction throughput of the blockchain system is maximized,as well as the latency and energy consumption of the system are minimized.Moreover,we formulate the joint optimization problem as a Markov decision process(MDP).To tackle the dynamic and continuity of the system state,the reinforcement learning(RL)is introduced to solve the MDP problem.Finally,simulation results demonstrate that the performance improvement of the proposed scheme through comparison with other existing schemes.
基金This work is supported by the National Key Research and Development Program of China(Grant No.2021YFE0105500)the National Natural Science Foundation of China(Grant No.61671248)+2 种基金the Key Research and Development Plan of Jiangsu Province,China(Grant No.BE2018719)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX19_0309)the Advantage Discipline Information and Communication Engineering of Jiangsu Province,China.
文摘Data loss or distortion causes adverse effects on the accuracy and stability of the thunderstorm point charge localization.To solve this problem,we propose a data complementary method based on the atmospheric electric field apparatus array group.The electric field component measurement model of the atmospheric electric field apparatus is established,and the orientation parameters of the thunderstorm point charge are defined.Based on the mirror method,the thunderstorm point charge coordinates are obtained by using the potential distribution formulas.To test the validity of the basic algorithm,the electric field component measurement error and the localization accuracy are studied.Besides the azimuth angle and the elevation angle,the localization parameters also include the distance from the apparatus to the thunderstorm cloud.Based on a primary electric field apparatus,we establish the array group of apparatuses.Based on this,the data measured by each apparatus is complementarily processed to regain the thunderstorm point charge position.The results show that,compared with the radar map data,this method can accurately reflect the location of the thunderstorm point charge,and has a better localization effect.Additionally,several observation results during thunderstorm weather have been presented.
基金supported by the National Natural Science Foundation of China(U1766210).
文摘With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly submergence,which shows that the usage patterns of electricity thieves may not always deviate from those of normal users,the performance of the existing usage-pattern-based method could be affected.In addition,the detection results of some unsupervised learning algorithm models are abnormal degrees rather than“0-1”to ascertain whether electricity theft has occurred.The detection with fixed threshold value may lead to deviation and would not be sufficiently flexible to handle the detection for different scenes and users.To address these issues,this study proposes a new electricity theft detection method based on load shape dictionary of users.A corresponding strategy for tunable threshold is proposed to optimize the detection effect of electricity theft,and the efficacy and applicability of the proposed adaptive electricity theft detection method were verified from numerical experiments.
文摘As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.