Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery...Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.展开更多
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the...Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.展开更多
With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery ...With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.展开更多
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi...Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac...The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.展开更多
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame...With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.展开更多
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati...Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.展开更多
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg elec...Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.展开更多
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ...All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.展开更多
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras...Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.展开更多
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L...Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.展开更多
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens...Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries.展开更多
Li metal batteries(LMBs)with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathodes could release a specific energy of>500 Wh kg^(-1) by increasing the charge voltage.However,high-nickel cathodes working at high voltages ...Li metal batteries(LMBs)with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathodes could release a specific energy of>500 Wh kg^(-1) by increasing the charge voltage.However,high-nickel cathodes working at high voltages accelerate degradations in bulk and at interfaces,thus significantly degrading the cycling lifespan and decreasing the specific capacity.Here,we rationally design an all-fluorinated electrolyte with addictive tri(2,2,2-trifluoroethyl)borate(TFEB),based on 3,3,3-fluoroethylmethylcarbonate(FEMC)and fluoroethylene carbonate(FEC),which enables stable cycling of high nickel cathode(LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),NMC811)under a cut-off voltage of 4.7 V in Li metal batteries.The electrolyte not only shows the fire-extinguishing properties,but also inhibits the transition metal dissolution,the gas production,side reactions on the cathode side.Therefore,the NMC811||Li cell demonstrates excellent performance by using limited Li and high-loading cathode,delivering a specific capacity>220 mA h g^(-1),an average Coulombic efficiency>99.6%and capacity retention>99.7%over 100 cycles.展开更多
Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on...Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.展开更多
Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery asse...Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.展开更多
Aqueous zinc-ion capacitors (ZICs) are considered as potential candidates for next generation electrochemical energy storage devices due to their high safety and low cost.However,the existing aqueous ZICs usually have...Aqueous zinc-ion capacitors (ZICs) are considered as potential candidates for next generation electrochemical energy storage devices due to their high safety and low cost.However,the existing aqueous ZICs usually have the problems of zinc dendrite growth and unsatisfactory performance at low temperature.Herein,an erythritol (Eryt) additive with inhibition of zinc dendrites and anti-freezing capability was introduced into the ZnSO4electrolyte.The experimental characterization and theoretical calculation confirm that the Eryt adsorbed on the surface of zinc anodes regulates the deposition orientation of Zn^(2+) and inhibits the formation of dendrites.It also reconstructs the solvation structure in the electrolyte to reduce water activity,enabling the electrolyte to have a lower freezing point for operation at low temperature.With the assistance of Eryt,the Zn||Zn symmetric cell exhibits a long cycle life of 2000 h,while the ZIC assembled with activated carbon (AC) cathode and zinc anode (Zn||AC) maintains a capacity retention of 98.2% after 30,000 cycles at a current density of 10 A g^(-1)(even after 10,000 cycles at-20°C,the capacity retention rate reached 94.8%.).This work provides a highly scalable,low-cost and effective strategy for the protection of the anodes of low-temperature aqueous ZICs.展开更多
The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging f...The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging for the liquid electrolyte.Herein,a novel pseudo‐oversaturated electrolyte(POSE)is prepared by introducing 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether(TTE)to adjust the coordination structure between diglyme(G2)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI).Surprisingly,although TTE shows little solubility to LiTFSI,the molar ratio between LiTFSI and G2 in the POSE can be increased to 1:1,which is much higher than that of the saturation state,1:2.8.Simulation and experimental results prove that TTE promotes closer contact of the G2 molecular with Li^(+)in the POSE.Moreover,it also participates in the formation of electrolyte/electrode interphases.The electrolyte shows outstanding compatibility with both the Li metal anode and typical high‐voltage cathodes.Li||Li symmetric cells show a long life of more than 2000 h at 1 mA cm^(−2),1 mAh cm^(−2).In the meantime,Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cell with the POSE shows a high reversible capacity of 134.8 mAh g^(−1 )after 900 cycles at 4.5 V,1 C rate.The concept of POSE can provide new insight into the Li^(+)solvation structure and in the design of advanced electrolytes for LMBs.展开更多
基金the National Research Foundation(NRF)of Korea(No.2022R1A2B5B02002097),funded by the Korea government(MSIT).
文摘Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.
基金the financial supports from the KeyArea Research and Development Program of Guangdong Province (2020B090919001)the National Natural Science Foundation of China (22078144)the Guangdong Natural Science Foundation for Basic and Applied Basic Research (2021A1515010138 and 2023A1515010686)。
文摘Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.
基金supported by the National Nature Science Foundation of China(22209211 and 52172241)Hong Kong Research Grants Council(CityU 11315622)+1 种基金the research funds from South-Central Minzu University(YZZ22001)the National Key R&D Program of China(2021YFA1501101).
文摘With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.
基金The authors are grateful for the grants provided by the National Natural Science Foundation of China(Grant no.52274309)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant no.CX20220183)Simin Li thanks the National Natural Science Foundation of China(Grant no.52204327).
文摘Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2019MEM014)。
文摘The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.
基金National Natural Science Foundation of China(52202299)the Analytical&Testing Center of Northwestern Polytechnical University(2022T006).
文摘With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
基金support from the National Natural Science Foundation of China (No.51806072)。
文摘Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.
基金the support of the National Natural Science Foundation of China(51971146,51971147,52171218 and 52271222)the Shanghai Municipal Science and Technology Commission(21010503100)+3 种基金the Major Program for the Scientific Research Innovation Plan of Shanghai Education Commission(2019-01-07-00-07E00015)the Shanghai Outstanding Academic Leaders Plan,the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology,201017-K)the Shanghai Rising-Star Program(20QA1407100)the General Program of Natural Science Foundation of Shanghai(20ZR1438400)
文摘Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.
基金supported by the Ensemble Grant for Early Career Researchers 2022 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,the Iwatani Naoji Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,and JP18H05513+2 种基金the Center for Computational Materials Science,Institute for Materials Research,Tohoku University for the use of MASAMUNEIMR(Nos.202212-SCKXX0204 and 202208-SCKXX-0212)the Institute for Solid State Physics(ISSP)at the University of Tokyo for the use of their supercomputersthe China Scholarship Council(CSC)fund to pursue studies in Japan.
文摘All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.
基金supported by the National Natural Science Foundation of China(52174247 and 22302066)“Hejian”Innovative Talent Project of Hunan Province(No.2022RC1088)+1 种基金the Hunan Provincial Natural Science Foundation(2023JJ40255)the Scientific Research Foundation of Hunan Provincial Education(22B0599 and 23A0442)。
文摘Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
基金supported by the National Natural Science Foundation of China(52122702,52277215)the Natural Science Foundation of Heilongjiang Province of China(JQ2021E005)。
文摘Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.
基金supported by the National Natural Science Youth Fund of China(52302247)the Natural Youth Science Foundation of Hunan Province(2022JJ40070)。
文摘Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries.
基金the National Natural Science Foundation of China and the Israeli Science Foundation for funding this research within the framework of the joint NSFC-ISF grant#51961145302supported by China Postdoctoral Science Foundation funded project(Grant#2020M682403).
文摘Li metal batteries(LMBs)with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathodes could release a specific energy of>500 Wh kg^(-1) by increasing the charge voltage.However,high-nickel cathodes working at high voltages accelerate degradations in bulk and at interfaces,thus significantly degrading the cycling lifespan and decreasing the specific capacity.Here,we rationally design an all-fluorinated electrolyte with addictive tri(2,2,2-trifluoroethyl)borate(TFEB),based on 3,3,3-fluoroethylmethylcarbonate(FEMC)and fluoroethylene carbonate(FEC),which enables stable cycling of high nickel cathode(LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),NMC811)under a cut-off voltage of 4.7 V in Li metal batteries.The electrolyte not only shows the fire-extinguishing properties,but also inhibits the transition metal dissolution,the gas production,side reactions on the cathode side.Therefore,the NMC811||Li cell demonstrates excellent performance by using limited Li and high-loading cathode,delivering a specific capacity>220 mA h g^(-1),an average Coulombic efficiency>99.6%and capacity retention>99.7%over 100 cycles.
基金supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017012, Human Resource Development Program for Industrial Innovation)the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS2024-00411892)。
文摘Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.
基金We express our sincere appreciation to the National Natural Science Foundation of China(No.51474113(M.Jing),22279070[L.Wang]and U21A20170[X.He])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang]).And we would like to thank the“Explorer 100”cluster system of Tsinghua National Laboratory for Information Science and Technology for facility support.
文摘Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
基金the financial supports of the National Natural Science Foundation of China(22109045,21875065)the China Postdoctoral Science Foundation Funded Project(2021M701191).
文摘Aqueous zinc-ion capacitors (ZICs) are considered as potential candidates for next generation electrochemical energy storage devices due to their high safety and low cost.However,the existing aqueous ZICs usually have the problems of zinc dendrite growth and unsatisfactory performance at low temperature.Herein,an erythritol (Eryt) additive with inhibition of zinc dendrites and anti-freezing capability was introduced into the ZnSO4electrolyte.The experimental characterization and theoretical calculation confirm that the Eryt adsorbed on the surface of zinc anodes regulates the deposition orientation of Zn^(2+) and inhibits the formation of dendrites.It also reconstructs the solvation structure in the electrolyte to reduce water activity,enabling the electrolyte to have a lower freezing point for operation at low temperature.With the assistance of Eryt,the Zn||Zn symmetric cell exhibits a long cycle life of 2000 h,while the ZIC assembled with activated carbon (AC) cathode and zinc anode (Zn||AC) maintains a capacity retention of 98.2% after 30,000 cycles at a current density of 10 A g^(-1)(even after 10,000 cycles at-20°C,the capacity retention rate reached 94.8%.).This work provides a highly scalable,low-cost and effective strategy for the protection of the anodes of low-temperature aqueous ZICs.
基金Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance,Grant/Award Number:22567616HNatural Science Foundation of Hebei Province of China,Grant/Award Number:B2020103028+3 种基金Science Fund for Creative Research Groups of the National Natural Science Foundation of China,Grant/Award Number:21921005National Key Research and Development Program of China,Grant/Award Number:2021YFB2400300Beijing Municipal Natural Science Foundation Project,Grant/Award Number:2222031National Natural Science Foundation of China,Grant/Award Numbers:52174281,21808228。
文摘The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging for the liquid electrolyte.Herein,a novel pseudo‐oversaturated electrolyte(POSE)is prepared by introducing 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether(TTE)to adjust the coordination structure between diglyme(G2)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI).Surprisingly,although TTE shows little solubility to LiTFSI,the molar ratio between LiTFSI and G2 in the POSE can be increased to 1:1,which is much higher than that of the saturation state,1:2.8.Simulation and experimental results prove that TTE promotes closer contact of the G2 molecular with Li^(+)in the POSE.Moreover,it also participates in the formation of electrolyte/electrode interphases.The electrolyte shows outstanding compatibility with both the Li metal anode and typical high‐voltage cathodes.Li||Li symmetric cells show a long life of more than 2000 h at 1 mA cm^(−2),1 mAh cm^(−2).In the meantime,Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cell with the POSE shows a high reversible capacity of 134.8 mAh g^(−1 )after 900 cycles at 4.5 V,1 C rate.The concept of POSE can provide new insight into the Li^(+)solvation structure and in the design of advanced electrolytes for LMBs.