期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
Optimization of plasma electrolyte oxidation process parameters for corrosion resistance of Mg alloy 被引量:5
1
作者 Z.Shahri S.R.Allahkaram +1 位作者 R.Soltani H.Jafari 《Journal of Magnesium and Alloys》 SCIE 2020年第2期431-440,共10页
Plasma electrolyte oxidation(PEO)is a surface treatment method with high dependency on the process parameters.This paper focuses on maximizing the corrosion resistance of PEO coatings applied on Mg-5Zn-0.4Ca(ZX504)all... Plasma electrolyte oxidation(PEO)is a surface treatment method with high dependency on the process parameters.This paper focuses on maximizing the corrosion resistance of PEO coatings applied on Mg-5Zn-0.4Ca(ZX504)alloy by optimizing the process parameiers.For this purpose,the Taguchi method based on LI8 orthogonal array with mixed level design was used for optimization and determining effective parameters.Main process factors including electrolyte concentration,current density,frequency and duty cycle were considered at different levels.The corrosion resistance,as the performance indicator,was obtained using electrochemical impedance spectroscopy technique.Surface characteristics were also evaluated using SEM(scanning electron microscopy),EDS(energy dispersive spectroscopy),profilometer and contact angle goniometer.The statistical analysis showed that the optimum condition could be obtained at a current density of 200 mA/cm^2,frequency of 500Hz and at a duty cycle of 30%,in an electrolyle containing 15 g/L NazPO·12H2O and 10g/L KF. 展开更多
关键词 Plasma electrolyte oxidation OPTIMIZATION Taguchi Corrosion ZX504 alloy
下载PDF
Microstructural, corrosion and mechanical behavior of two-step plasma electrolyte oxidation ceramic coatings 被引量:1
2
作者 H.KHANMOHAMMADI S.R.ALLAHKARAM N.TOWHIDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第10期2225-2233,共9页
Plasma electrolytic oxidation(PEO)is considered as a cost effective and environmentally friendly surface treatmentprocess for improving surface properties of light alloys.The formation of ceramic coatings on Ti6Al4V a... Plasma electrolytic oxidation(PEO)is considered as a cost effective and environmentally friendly surface treatmentprocess for improving surface properties of light alloys.The formation of ceramic coatings on Ti6Al4V alloy was reported bytwo-step PEO process and its structural,electrochemical and mechanical properties with the coated samples were compared byone-step PEO process in an alkaline electrolyte.The structural properties were studied using field-emission scanning microscope(FESEM)and X-ray diffraction(XRD).Electrochemical studies were carried out using linear polarization method and in additionmechanical behaviors were investigated by means of Knoop microhardness and nanoindentation method.Results showed that thesecond step process resulted in an increase of both porosity percentage and average pore diameter on the surface.The two-stepprocess resulted in a small increase of thickness from about12.5to13.0μm.Electrochemical test results showed that applying thesecond step resulted in the decrease of both polarization resistance from1800.2to412.5kΩ/cm2and protection efficiency from97.8%to90.5%.Finally,the nanoindentation results indicated that the PEO coatings became softer but more ductile after applyingthe second processing step in acidic electrolyte. 展开更多
关键词 plasma electrolytic oxidation microstructure CORROSION NANOINDENTATION
下载PDF
NaF assisted preparation and the improved corrosion resistance of high content ZnO doped plasma electrolytic oxidation coating on AZ31B alloy
3
作者 Chao Yang Jian Huang +7 位作者 Suihan Cui Ricky Fu Liyuan Sheng Daokui Xu Xiubo Tian Yufeng Zheng Paul K.Chu Zhongzhen Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3602-3615,共14页
In the present research,the NaF assisted plasma electrolytic oxidation(PEO)is designed to fabricate the high-content ZnO nanoparti-cles doped coating on AZ31B alloy.The microstructure,phase constituents and corrosion ... In the present research,the NaF assisted plasma electrolytic oxidation(PEO)is designed to fabricate the high-content ZnO nanoparti-cles doped coating on AZ31B alloy.The microstructure,phase constituents and corrosion behavior of the PEO coatings are investigated systematically.The results reveal that the introduction of NaF promotes the formation of MgF2 nanophases in the passivation layer on Mg alloy,decreasing the breakdown voltage and discharge voltage.As a result,the continuous arcing caused by high discharge voltage is alleviated.With the increasing of NaF content,the Zn content in the PEO coating is enhanced and the pore size in the coating is decreased correspondingly.Due to the high-content ZnO doping,the PEO coating protected AZ31B alloy demonstrates the better corrosion resistance.Compared with the bare AZ31B alloy,the high-content ZnO doped PEO coated sample shows an increased corrosion potential from-1.465 V to-1.008 V,a decreased corrosion current density from 3.043×10^(-5) A·cm^(-2) to 3.960×10^(-8) A·cm^(-2) and an increased charge transfer resistance from 1.213×10^(2) ohm·cm^(2) to 2.598×10^(5) ohm·cm^(2).Besides,the high-content ZnO doped PEO coated sample also has the excellent corrosion resistance in salt solution,exhibiting no obvious corrosion after more than 2000 h neutral salt spraying and 28 days’immersion testing.The improved corrosion resistance can be ascribed to the relative uniform distribution of ZnO in PEO coating which can transform to Zn(OH)2 and form a continuous protective layer along the corrosion interface. 展开更多
关键词 AZ31B alloy Plasma electrolytic oxidation(PEO) ZnO doping NAF Corrosion resistant
下载PDF
Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO_(3))_(2) solutions
4
作者 Jirui Ma Xiaopeng Lu +3 位作者 Santosh Prasad Sah Qianqian Chen You Zhang Fuhui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2048-2061,共14页
To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.I... To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.In this study,the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate(SDS)and sodium dodecyl benzene sulf-onate into Ba(NO_(3))_(2) post-sealing solutions.Scanning electron microscopy,X-ray photoelectron spectroscopy,X-ray diffraction,Fourier transform infrared spectrometer,and ultraviolet-visible analyses showed that the inhibitors enhanced the incorporation of BaO_(2) into PEO coatings.Electrochemical impedance showed that post-sealing in Ba(NO_(3))_(2)/SDS treatment enhanced corrosion resistance by three orders of magnitude.The total impedance value remained at 926Ω·cm^(2)after immersing in a 0.5wt%NaCl solution for 768 h.A salt spray test for 40 days did not show any obvious region of corrosion,proving excellent post-sealing by Ba(NO_(3))_(2)/SDS treatment.The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption. 展开更多
关键词 Mg plasma electrolytic oxidation posttreatment corrosion resistance
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
5
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes Corrosion resistance AM50 magnesium alloy
下载PDF
Wear and corrosion resistant coatings on surface of cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes 被引量:12
6
作者 谢焕钧 程英亮 +2 位作者 李绍先 曹金晖 曹力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期336-351,共16页
Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and... Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances. 展开更多
关键词 A356 aluminium alloy sodium aluminate plasma electrolytic oxidation WEAR corrosion
下载PDF
Improving the wear resistance of plasma electrolytic oxidation(PEO)coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes:A review 被引量:8
7
作者 Maryam Molaei Kazem Babaei Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1167-1189,共23页
As an efficient surface modification approach,the plasma electrolytic oxidation(PEO)technique can boost the capability of wear protection in Mg and its alloys by applying a hard and thick ceramic coating.In this proce... As an efficient surface modification approach,the plasma electrolytic oxidation(PEO)technique can boost the capability of wear protection in Mg and its alloys by applying a hard and thick ceramic coating.In this procedure,more efficient protection can be acquired via adding additives(in the form of particle,powder,sheet,etc.)into solutions and producing composite coatings.These additives result in more efficient protection against wear via getting stuck in the cracks and pores of coatings and rising the thickness,hardness,and diminishing the porosity size and content.The efficiency of each additive can be changed owing to its intrinsic properties like melting point,size,participation type(reactive,partly reactive,or inert)and potential of zeta.In this review,the effects of distinct additives in nano-and micro-scale size on wear behavior of PEO coatings on Mg and its alloys is going to be reviewed. 展开更多
关键词 Plasma electrolytic oxidation(PEO) Mg alloys Wear behavior Nano-sized additives Micro-sized additives
下载PDF
Investigation of mutual effects among additives in electrolyte for plasma electrolytic oxidation on magnesium alloys 被引量:10
8
作者 Lingyun An Ying Ma +2 位作者 Le Sun Zhanying Wang Sheng Wang 《Journal of Magnesium and Alloys》 SCIE 2020年第2期523-536,共14页
Plasma electrolytic oxidation(PEO)coatings were prepared on AZ91D magnesium alloys in alkaline silicate-based electrolyte with and without additives.The mutual effects among additives including TiC particles,dispersan... Plasma electrolytic oxidation(PEO)coatings were prepared on AZ91D magnesium alloys in alkaline silicate-based electrolyte with and without additives.The mutual effects among additives including TiC particles,dispersant polyethylene glycol 6000(PEG6000)and anionic surfactant sodium dodecyl sulfate(SDS)were studied based on orthogonal experiment.The content and distribution of TiC deposited in the coatings were measured by EPMA and EDS.The thicknesses,phase compositions,microstructures and corrosion resistances of the codlings were cAarnined by using TT260 eddy current tuickncss gage,XRD,SEM and clcctrochcniical test,respectively.The results show that the experiment design of this study is the key to study the mutual effects among these additives.Each additive and their interactions all remarkably influence TiC content and corrosion resistance of the coatings.Smaller size TiC is much easier to migrate towards the anode,and the interaction between PEG6000 and SDS both effectively prevents its agglomeration and increases the number of its negative surface charges,which further increase the migration rate and the deposited uniformity of TiC and make TiC have more opportunity to deposit in the discharge channel.Thus,when smaller size TiC,PEG6000 and SDS are all added into the electrolyte,they could improve the anti-corrosion property of the coating to the largest extent attributed to higher TiC content and the densest microstructure of the coating. 展开更多
关键词 Magnesium alloys Plasma electrolytic oxidation ADDITIVES Mutual effects Orthogonal experiment Corrosion resistance
下载PDF
Effect of NaOH on plasma electrolytic oxidation of A356 aluminium alloy in moderately concentrated aluminate electrolyte 被引量:5
9
作者 Yu-lin CHENG Huan-jun XIE +1 位作者 Jin-hui CAO Ying-liang CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第12期3677-3690,共14页
Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by in... Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH.However,corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration.Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte.The results show that the optimal NaOH concentration is 5 g/L,which improves the stability of storage electrolyte to about 35 days,and leads to dense coatings with high wear performance(wear rate:4.1×10^(−7) mm^(3)·N^(−1)·m^(−1)). 展开更多
关键词 plasma electrolytic oxidation wear resistance sodium aluminate sodium hydroxide A356 alloy
下载PDF
Plasma electrolytic oxidation behavior and corrosion resistance of brass in aluminate electrolyte containing NaH2PO4 or Na2SiO3 被引量:3
10
作者 Yu-lin CHENG Tian FENG +2 位作者 Jia-hui LÜ Pan-feng HU Ying-liang CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期3985-3997,共13页
Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating ... Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating formation and corrosion resistance. For the PEO in S1 electrolyte, a mixed layer of AlPO4and Al2O3is formed at the initial stage, which leads to fast plasma discharges and formation of black coatings with the compositions of Al2O3,CuO, Cu2O and ZnO. However, in S2 electrolyte, plasma discharges are delayed and the coatings show a reddish color due to more Cu2O. Mott-Schottky tests show that the S1 coatings are p-type semiconductors;while the S2 coatings can be adjusted between n-type and p-type. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests show that the PEO treatment can significantly improve the corrosion resistance of brass, with protection efficiency up to 91.50% and the largest charge transfer resistance of 59.95 kΩ·cm^(2) for the S1 coating. 展开更多
关键词 plasma electrolytic oxidation BRASS corrosion resistance ALUMINATE sodium dihydrogen phosphate sodium silicate
下载PDF
Effect of Various Additives on Performance of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy in the Phosphate Electrolytes 被引量:3
11
作者 庄俊杰 宋仁国 +1 位作者 LI Hongxia XIANG Nan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期703-709,共7页
Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) ... Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance. 展开更多
关键词 magnesium alloy plasma electrolytic oxidation additives microstructure corrosion resistance
原文传递
A super wear-resistant coating for Mg alloys achieved by plasma electrolytic oxidation and discontinuous deposition 被引量:1
12
作者 Xixi Dong Mingxu Xia +4 位作者 Feng Wang Hailin Yang Gang Ji E.A.Nyberg Shouxun Ji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2939-2952,共14页
Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼1... Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼14µm thick and rough PEO protection layer has inferior wear resistance,which limits magnesium alloys as sliding or reciprocating parts,where magnesium alloys have special advantages by their inherent damping and denoising properties and attractive light-weighting.Here a novel super wear-resistant coating for magnesium alloys was achieved,via the discontinuous sealing(DCS)of a 1.3µm thick polytetrafluoroethylene(PTFE)polymer layer with an initial area fraction(A_(f))of 70%on the necessary PEO protection layer by selective spraying,and the wear resistance was exceptionally enhanced by∼5500 times in comparison with the base PEO coating.The initial surface roughness(Sa)under PEO+DCS(1.54µm)was imperfectly 59%higher than that under PEO and conventional continuous sealing(CS).Interestingly,DCS was surprisingly 20 times superior for enhancing wear resistance in contrast to CS.DCS induced nano-cracks that splitted DCS layer into multilayer nano-blocks,and DCS also provided extra space for the movement of nano-blocks,which resulted in rolling friction and nano lubrication.Further,DCS promoted mixed wear of the PTFE polymer layer and the PEO coating,and the PTFE layer(HV:6 Kg·mm^(−2),A_(f):92.2%)and the PEO coating(HV:310 Kg·mm^(−2),A_(f):7.8%)served as the soft matrix and the hard point,respectively.Moreover,the dynamic decrease of Sa by 29%during wear also contributed to the super wear resistance.The strategy of depositing a low-frictional discontinuous layer on a rough and hard layer or matrix also opens a window for achieving super wear-resistant coatings in other materials. 展开更多
关键词 Magnesium alloy COATING Plasma electrolytic oxidation Discontinuous deposition Wear resistance MECHANISM
下载PDF
The mechanism for tuning the corrosion resistance and pore density of plasma electrolytic oxidation(PEO)coatings on Mg alloy with fluoride addition 被引量:1
13
作者 Zhu Lujun Li Hongzhan +2 位作者 Ma Qingmei Lu Jiangbo Li Zhengxian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2823-2832,共10页
Here we prepared PEO coatings on Mg alloys in silicate-NaOH-phosphate electrolyte containing different concentrations of NaF addition.The detailed microstructural characterizations combining with potentiodynamic polar... Here we prepared PEO coatings on Mg alloys in silicate-NaOH-phosphate electrolyte containing different concentrations of NaF addition.The detailed microstructural characterizations combining with potentiodynamic polarization and electrochemical impedance spectra(EIS)were employed to investigate the roles of fluoride in the growth and corrosion properties of PEO coating on Mg.The result shows the introduction of NaF led to a fluoride-containing nanolayer(FNL)formed at the Mg/coating interface.The FNL consists of MgO nanoparticles and insoluble MgF_(2)nanoparticles(containing rutile phase and cubic phase).The increase in the NaF concentration of the electrolyte increases the thickness and the MgF_(2)content in the FNL.When anodized in the electrolyte containing 2 g/L NaF,the formed FNL has the highest thickness of 100-200 nm along with the highest value of x of∼0.6 in(MgO)_(1-x)(MgF_(2))x resulted in the highest corrosion performance of PEO coating.In addition,when anodized in the electrolyte containing a low NaF concentration(0.4-0.8 g/L),the formed FNL was thin and discontinuous,which would decrease the pore density and increase the coating's uniformness simultaneously. 展开更多
关键词 Mg alloys Plasma electrolytic oxidation CORROSION Pore density FLUORIDE
下载PDF
A self-healing and bioactive coating based on duplex plasma electrolytic oxidation/polydopamine on AZ91 alloy for bone implants
14
作者 Safoora Farshid Mahshid Kharaziha Masoud Atapour 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期592-606,共15页
Magnesium(Mg) alloys are well-known in biomedical materials owing to their elastic module near to bone, biocompatibility and biodegradation properties. Nevertheless, poor corrosion resistance hinders their biomedical ... Magnesium(Mg) alloys are well-known in biomedical materials owing to their elastic module near to bone, biocompatibility and biodegradation properties. Nevertheless, poor corrosion resistance hinders their biomedical applications. Besides, it is necessary to endow Mg alloys with bioactive property, which is crucial for temporary bone implants. Here, a self-healing, corrosion resistant and bioactive duplex coating of plasma electrolytic oxidization(PEO)/polydopamine(PDA) is applied on AZ91 substrate using PEO and subsequent electrodeposition process. Moreover, the role of different electrodeposition times(60 s, 120 s) and dopamine concentrations(1 and 1.5 mg/ml) to improve corrosion resistance, bioactivity, biocompatibility and self-healing property and its mechanism are investigated. The results indicate that the PEO coating is efficiently sealed by the PDA, depending on the electrodeposition parameters. Noticeably, electrodeposition for 120 s in dopamine concentration of 1 mg/ml(120T-1C) results in the formation of uniform and crack-free PDA coating. Duplex PEO/PDA coatings reveal high bioactivity compared to PEO coating, owing to electrostatic interaction between PDA top-layer and calcium and phosphate ions as well as high hydrophilicity of coatings. In addition, duplex PEO/PDA coatings also show improved and more stable protective performance than the PEO and bare alloy, depending on the PDA deposition parameters. Noticeably, the corrosion current density of the 120T-1C decreases one orders of magnitude compared to PEO. In addition, the presence of a broad passivation region in the anodic polarization branch shows durable self-healing property via Zipper-like mechanism, demonstrating the duplex coating could preserve promising corrosion resistance.Furthermore, the cytocompatibility of duplex coated samples is also confirmed via interaction with MG63 cells. In summary, the PEO/PDA coating with great corrosion protection, self-healing ability, bioactivity and biocompatibility could be a promising candidate for degradable magnesium-based implants. 展开更多
关键词 Magnesium alloy Plasma electrolytic oxidation POLYDOPAMINE SELF-HEALING Bioactivity Orthopedic applications
下载PDF
Incorporation of LDH nanocontainers into plasma electrolytic oxidation coatings on Mg alloy
15
作者 Yan Li Xiaopeng Lu +5 位作者 Maria Serdechnova Carsten Blawert Mikhail L.Zheludkevich Kun Qian Tao Zhang Fuhui Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1236-1246,共11页
In-situ incorporation of layered double hydroxides(LDH)nanocontainers into plasma electrolytic oxidation(PEO)coatings on AZ91 Mg alloy has been achieved in the present study.Fumarate was selected as Mg corrosion inhib... In-situ incorporation of layered double hydroxides(LDH)nanocontainers into plasma electrolytic oxidation(PEO)coatings on AZ91 Mg alloy has been achieved in the present study.Fumarate was selected as Mg corrosion inhibitor for exchange and intercalation into the nanocontainers,which were subsequently incorporated into the coating.It was found that the thickness and compactness of the coatings were increased in the presence of LDH nanocontainers.The corrosion protection performance of the blank PEO,LDH containing PEO and inhibitor loaded coatings was evaluated by means of polarization test and electrochemical impedance spectroscopy(EIS).The degradation process and corrosion resistance of PEO coating were found to be greatly affected by the loaded inhibitor and nanocontainers by means of ion-exchange when corrosion occurs,leading to enhanced and stable corrosion resistance of the substrate. 展开更多
关键词 MAGNESIUM Layered double hydroxides INHIBITOR Plasma electrolytic oxidation NANOCONTAINER
下载PDF
Corrosion behavior of composite coatings containing hydroxyapatite particles on Mg alloys by plasma electrolytic oxidation: A review
16
作者 Arash Fattah-alhosseini Razieh Chaharmahali +1 位作者 Sajad Alizad Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期2999-3011,共13页
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep... Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO. 展开更多
关键词 Mg and its alloys HYDROXYAPATITE Corrosion behavior Composite coatings Plasma electrolytic oxidation(peo)
下载PDF
Electrochemical response of MgO/Co_(3)O_(4) oxide layers produced by plasma electrolytic oxidation and post treatment using cobalt nitrate
17
作者 Mosab Kaseem Tehseen Zehra +2 位作者 Tassawar Hussain Young Gun Ko Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1057-1073,共17页
This work looked into the influence of the sealing treatment on the structural feature and electrochemical response of AZ31 Mg alloy coated via plasma electrolytic oxidation(PEO).Here,the inorganic layers produced by ... This work looked into the influence of the sealing treatment on the structural feature and electrochemical response of AZ31 Mg alloy coated via plasma electrolytic oxidation(PEO).Here,the inorganic layers produced by PEO in an alkaline-phosphate electrolyte were subsequently immersed for different periods in cold(60°C)and hot(100°C)aqueous solutions containing either 1 or 3 gr of cobalt nitrate hexahydrate in the presence of hydrogen peroxide as an initiator.The results showed that the sealing treatments in the hot solutions could trigger the hydration reactions of PEO coating which would largely assist the surface incorporation of Co_(3)O_(4)into the coating.In contrast,the sealing in cold solutions led to less compact coatings,which was attributed to the fact the hydration reactions would be restricted at 60°C.A nearly fully sealed coating with a porosity of~0.5%was successfully formed on the sample immersed in the hot solution containing 1 gr of cobalt nitrate hexahydrate.Thus,the electrochemical stability of this fully sealed coating was superior to the other samples as it had the lowest corrosion current density(4.71×10^(-10)A·cm^(-2))and the highest outer layer resistance(3.81×10^(7)Ω·cm^(2)).The composite coatings developed in this study are ideal for applications requiring high electrochemical stability. 展开更多
关键词 AZ31 Mg alloy Plasma electrolytic oxidation Co_(3)O_(4) HYDRATION Corrosion
下载PDF
Formation process of composite plasma electrolytic oxidation coating containing zirconium oxides on AM50 magnesium alloy 被引量:8
18
作者 刘锋 单大勇 +1 位作者 宋影伟 韩恩厚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期943-948,共6页
The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM)... The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX). Electrochemical impedance spectroscopy (EIS) tests were used to study the variation of the corrosion resistance of the coating during the PEO treatment. The results show that the coating formed on Mg alloy is mainly composed of MgO and MgF 2 when the applied voltage is lower than the sparking voltage, and zirconium oxides start to be deposited on Mg substrate after the potential exceeding the sparking voltage. The corrosion resistance of the coating increases with increasing the applied voltage. 展开更多
关键词 plasma electrolytic oxidation coating zirconium oxide MGO corrosion resistance
下载PDF
Effects of current density on microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy 被引量:10
19
作者 项南 宋仁国 +3 位作者 庄俊杰 宋若希 陆筱雅 苏旭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期806-813,共8页
Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o... Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings. 展开更多
关键词 6063 aluminum alloy ceramic coating plasma electrolytic oxidation(PEO) current density MICROSTRUCTURE mechanical property
下载PDF
An ionic liquid-assisted strategy for enhanced anticorrosion of low-energy PEO coatings on magnesium–lithium alloy 被引量:2
20
作者 You Zhang Chuping Chen +3 位作者 Haoyue Tian Shuqi Wang Chen Wen Fei Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2380-2396,共17页
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab... A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance. 展开更多
关键词 Magnesium-lithium alloy Plasma electrolytic oxidation Low energy Ionic liquid Corrosion resistance
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部