期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Transcriptomics integrated with metabolomics reveals the mechanism of CaCl_(2)-HCl electrolyzed water-induced glucosinolate biosynthesis in broccoli sprouts
1
作者 Cui Li Shuhui Song +1 位作者 Yanan He Haijie Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期801-812,共12页
Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment ... Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment. 展开更多
关键词 Broccoli sprouts CaCl_(2)-HCl electrolyzed water GLUCOSINOLATES TRANSCRIPTOMICS Metabolomics
下载PDF
Effect of Alkaline Electrolyzed Water on Performance Improvement of Green Concrete with High Volume of Mineral Admixtures 被引量:2
2
作者 Guibin Liu Meinan Wang +2 位作者 Qi Yu Qiuyi Li Liang Wang 《Journal of Renewable Materials》 SCIE EI 2021年第11期2051-2065,共15页
The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alk... The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alkaline electrolyzed waters was used as mixing water to improve the early strength and enhance the durability of green concrete with high volume mineral admixture,the influences of alkaline electrolyzed water(AEW)on hydration activity of mineral admixture and durability of concrete were determined.The results showed that compared with natural tap water,AEW can accelerate early hydration process of cement in concrete and produce comparatively more hydrated products,leading to a 13.6%higher compressive strength than that of ordinary concrete at early age,but the improvement effect of AEW concrete was relatively reduced at long-term age.Meanwhile,the activity of mineral admixtures could be stimulated by AEW to some extent,the strength and durability performance of AEW concrete after double doping 25%slag and 25%fly ash can still reach the level of ordinary cement concrete without mineral admixtures.The SEM micromorphology of 7 d hydrated natural tap water cement paste was observed to be flaky and tabular,but the AEW cement pastes present obvious cluster and granulation phenomenon.The SEM microstructure of AEW concrete with mineral admixtures is more developed and denser than ordinary tap water concrete with mineral admixtures.Therefore,the AEW probably could realize the effective utilization of about 50%mineral admixture amount of concrete without strength loss,the cement production cost and associated CO_(2) emission reduced,which has a good economic and environmental benefit. 展开更多
关键词 Alkaline electrolyzed water durability improvement green concrete mineral admixture MICROMORPHOLOGY
下载PDF
Electrolyzed Oxidized Water (EOW): Non-Thermal Approach for Decontamination of Food Borne Microorganisms in Food Industry
3
作者 Subrota Hati Surajit Mandal +4 位作者 P. S. Minz Shilpa Vij Yogesh Khetra B. P. Singh Dipika Yadav 《Food and Nutrition Sciences》 2012年第6期760-768,共9页
Electrolyzed Oxidized Water (EOW) is produced by passing a diluted salt solution through an electrolytic cell, having anode and cathode electrodes. The anode and cathode are separated by a bipolar membrane. Negatively... Electrolyzed Oxidized Water (EOW) is produced by passing a diluted salt solution through an electrolytic cell, having anode and cathode electrodes. The anode and cathode are separated by a bipolar membrane. Negatively charged ions—chloride and hydroxide in the diluted salt solution move to anode to give up electrons and become gas (O2, Cl2) and hypochlorous acid and having redox potential of +700 to +800 mV with pH 4.0. It has a strong oxidation potential and a shortage of electrons giving it the ability to oxidize and sterilize. In microbial inactivation process, oxidized water damage cell membranes, create disruption in cell metabolic processes and essentially kill the cell. EOW, also a strong acid, is different to hydrochloric acid or sulfuric acid in that it is not corrosive to skin, mucous membrane, or organic material. It is easy to handle and suitable for the sanitation of the plant and decontamination of foods. Electrolyzed water has been tested and used as a disinfectant in the food industry and other applications. 展开更多
关键词 electrolyzed OXIDIZED Anode DISINFECTANT FOOD MICROORGANISMS
下载PDF
Electrolyzed water and its application in animal houses 被引量:7
4
作者 Weichao ZHENG Li NI Baoming LI 《Frontiers of Agricultural Science and Engineering》 2016年第3期195-205,共11页
Electrolyzed water(EW) can be produced by electrolysis of a dilute salt solution. Slightly acidic electrolyzed water(SAEW, p H 5.0–6.5) and neutral electrolyzed water(NEW, p H 6.5–8.5) are considered healthy and env... Electrolyzed water(EW) can be produced by electrolysis of a dilute salt solution. Slightly acidic electrolyzed water(SAEW, p H 5.0–6.5) and neutral electrolyzed water(NEW, p H 6.5–8.5) are considered healthy and environmentally friendly because no hazardous chemicals are added in its production, there is reduced corrosion of surfaces and it minimizes the potential for damage to animal and human health. Over the last decade, EW has become increasingly popular as an alternative disinfectant for decontamination in animal houses. However, there have been some issues related to EW that are not well known, including different mechanisms for generation of SAEW and NEW, and the antimicrobial mechanism of EW. This review covers the definitions of SAEW and NEW, different generation systems for SAEW and NEW, the antimicrobial mechanism of EW, and recent developments related to the application of SAEW and NEW in animal houses. 展开更多
关键词 DISINFECTION poultry and livestock slightly acidic electrolyzed water neutral electrolyzed water
原文传递
Preservative effects of the combined treatment of slightly acidic electrolyzed water and ice on pomfret
5
作者 Xiaoling Huang Songming Zhu +3 位作者 Xiaomin Zhou Jinsong He Yong Yu Zhangying Ye 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第1期230-236,共7页
This study assessed the combined effect of slightly acidic electrolyzed water(SAEW)and slightly acidic electrolyzed water ice(SAEW-ice)on the quality of pomfrets over a period of 18 d of cold storage at 4°C.A pre... This study assessed the combined effect of slightly acidic electrolyzed water(SAEW)and slightly acidic electrolyzed water ice(SAEW-ice)on the quality of pomfrets over a period of 18 d of cold storage at 4°C.A presoak for 5 min in SAEW solution(22 mg/L)was used before the pomfrets were placed on SAEW-ice(pH:6.45;ORP:803 mV;ACC:18 mg/L);The changes in physicochemical properties(i.e.,pH,thiobarbituric acid,total volatile basic nitrogen and texture profile),microbial loads and sensory characteristics were all analyzed.Compared with the tap water(TW)group,the total bacterial counts of the SAEW group significantly decreased by 1.27 log10 CFU/g after immersion(p<0.05).The shelf life of the pomfrets was prolonged by 9 d by the combined treatment of SAEW and SAEW-ice during storage at 4℃.On the 18th day,the gumminess and chewiness values of the pomfrets in the SAEW+SAEW-ice group were 195 g and 3.97 mJ,respectively,which were significantly higher than those of the other groups(p<0.05).The results suggested that SAEW+SAEW-ice treatments have great potential as a novel method to maintain the quality and extend the shelf life of pomfrets during refrigerated storage. 展开更多
关键词 POMFRET slightly acidic electrolyzed water slightly acidic electrolyzed water ice storage quality PRESERVATION
原文传递
Inactivation efficiency of slightly acidic electrolyzed water against microbes on facility surfaces in a disinfection channel 被引量:2
6
作者 Zang Yitian Li Baoming +3 位作者 Shi Zhengxiang Sheng Xiaowei Wu Hongxiang Shu Dengqun 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第6期23-30,共8页
Slightly acidic electrolyzed water(SAEW,pH 6.0-6.5)is an ideal and environmentally-friendly disinfectant,which was used to prevent and control bacterial infections on farms.This work aims to investigate the inactivati... Slightly acidic electrolyzed water(SAEW,pH 6.0-6.5)is an ideal and environmentally-friendly disinfectant,which was used to prevent and control bacterial infections on farms.This work aims to investigate the inactivation effectiveness of SAEW in inactivating microbes in a disinfection channel.The bactericidal efficiency of SAEW on equipment surfaces was compared to two commercial disinfectants,Kuei A bromide solution(KAS,5:1000 v/v)and Glutaraldehyde solution(GS,5:1000 v/v).The disinfection effectiveness of SAEW in inactivating Salmonella enteritidis(S.enteritidis)on equipment surfaces in the disinfection channel was evaluated,and a model was developed using multiple linear regression analysis.Results indicated that SAEW was significantly(p<0.05)more efficient than KAS and GS on kits and clothing in the disinfection channel at 1 min.The SAEW did not contribute as aggressively to respiratory difficulty as KAS and GS.Maximum reductions of 2.362 log10 CFU/cm^(2),2.613 log10 CFU/cm^(2) and 2.359 log10 CFU/cm^(2) for Salmonella enteritidis were obtained from clothing surfaces,iron materials,and kits treated with SAEW for 2.5 min at a chlorine concentration of 220 mg/L.Moreover,the established model had a good fit-quantified by the determination coefficient R^(2)(0.939)and a lack of fit test(p>0.05).In addition,available chlorine concentration(ACC)was an important factor than other factors,and the inactivation efficiency of Salmonella enteritidis sprayed by SAEW treatment was different between iron materials,kits and clothing surfaces(iron>kit>clothing). 展开更多
关键词 slightly acidic electrolyzed water disinfection channel S.enteritidis DISINFECTION bacterial infection prevention and control livestock farm
原文传递
Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics
7
作者 Junhui Li Haotian Zhang +4 位作者 Cuiping Li Xingxu Zhu Ruitong Liu Fangwei Duan Yongming Peng 《Energy Engineering》 EI 2024年第2期291-313,共23页
In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order... In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%. 展开更多
关键词 Hydrogen storage system simulation modeling ELECTROLYZER fuel cell capacity loss
下载PDF
Disinfection effect of adding slightly acidic electrolyzed water to artificial seawater under the condition of static hybrid
8
作者 Chunfang Wang Xiaoling Huang +3 位作者 Shuo Wang Yong Yu Songming Zhu Zhangying Ye 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第2期218-222,共5页
Mixed solution of slightly acidic electrolyzed water(SAEW)and artificial seawater was used to investigate the disinfection potential of SAEW in artificial seawater.Inoculated Vibrio parahaemolyticus(suspended in 3%sod... Mixed solution of slightly acidic electrolyzed water(SAEW)and artificial seawater was used to investigate the disinfection potential of SAEW in artificial seawater.Inoculated Vibrio parahaemolyticus(suspended in 3%sodium chloride alkaline peptone water and 0.85%sodium chloride water,respectively)was subjected to different mixed-SAEW and SAEW immersion treatments(5-20 mg/L available chlorine concentration(ACC)).In the presence of organic matter,4.07 logCFU/mL significant reduction(p<0.05)was achieved after treating with 20 mg/L mixed-SAEW for 15 min.There was 5.13 logCFU/mL reduction after treating with 15 mg/L SAEW for 15 min.For V.parahaemolyticus suspended in 0.85%sodium chloride solution,it was undetected after 30 s SAEW treatment(5 mg/L ACC)or 120 s mixed-SAEW treatment(10 mg/L ACC).At a ratio of SAEW and artificial seawater at 1:15(V/V),SAEW could inactivate V.parahaemolyticus to undetectable level in artificial seawater in one minute,which was comparable with UV treatment of 10 W.The results indicated high sanitization potential of SAEW against V.parahaemolyticus in aquaculture seawater. 展开更多
关键词 slightly acidic electrolyzed water DISINFECTION INACTIVATION Vibrio parahaemolyticus artificial seawater ULTRAVIOLET
原文传递
Bactericidal efficacy of slightly acidic electrolyzed water(SAEW)against Listeria monocytogenes planktonic cells and biofilm on food-contact surfaces
9
作者 Jianxiong Hao Junyi Zhang +1 位作者 Xueqi Zheng Dandan Zhao 《Food Quality and Safety》 SCIE CSCD 2022年第2期225-233,共9页
In the present study,the bactericidal efficacy of slightly acidic electrolyzed water(SAEW)against Listeria monocytogenes(L.monocytogenes)planktonic cells and biofilm on food-contact surfaces including stainless steel ... In the present study,the bactericidal efficacy of slightly acidic electrolyzed water(SAEW)against Listeria monocytogenes(L.monocytogenes)planktonic cells and biofilm on food-contact surfaces including stainless steel and glass was systematically evaluated.The results showed that SAEW(pH 5.09 and available chlorine concentration(ACC)of 60.33 mg/L)could kill L.monocytogenes on food-contact surfaces completely in 30 s,a disinfection efficacy equal to that of NaCIO solutions(pH 9.23 and ACC of 253.53 mg/L).The results showed that long exposure time and high ACC contributed to the enhancement of the disinfection efficacy of SAEW on L.monocytogenes on food-contact surfaces.Moreover,the log reduction of SAEW treatment presented an increasing tendency within the prolonging of treatment time when SAEW was used to remove the L.monocytogenes bioflm formed on stainless steel and glass surfaces,which suggested that SAEW could remove L.monocytogenes bio-film effectively and its disinfection efficacy is equal to(in the case of stainless steel)or higher than(in the case of glass)that of high-ACC NaCIO solutions.In addition,the results of the crystal violet staining and scanning electron microscopy also demonstrated that SAEW treatment could remove the L.monocytogenes biofilm on food-contact surfaces. 展开更多
关键词 Slightly acidic electrolyzed water Listeria monocytogenes biofilm food-contact surface
原文传递
Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater:Recent advances,challenges,and techno-feasible assessment 被引量:1
10
作者 Obaid Fahad Aldosari Ijaz Hussain Zuhair Malaibari 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期658-688,I0014,共32页
Hydrogen has been regarded as a promising renewable and green energy source to meet energy needs and attain net-zero carbon emissions.The electrolysis of seawater to make hydrogen is one of the fascinating development... Hydrogen has been regarded as a promising renewable and green energy source to meet energy needs and attain net-zero carbon emissions.The electrolysis of seawater to make hydrogen is one of the fascinating developments of the twenty-first century.This method uses abundant and relatively inexpensive seawater,as opposed to freshwater,which is rare and can be prohibitively expensive.In recent years,significant research and advancements have been made in direct seawater electrolysis technology for hydrogen production.However,producing highly effective and efficient electrocatalysts with long-term viability under harsh corrosive conditions remains a challenging and severe topic for large-scale seawater electrolysis technology.There is still a large accomplishment gap in understanding how to improve seawater electrolysis to increase hydrogen yields and prolong stability.It is,therefore,crucial to have a condensed knowledge of the tunable and inherent interactions between various electrocatalysts,covering electrolyzer types and paying particular attention to those with high efficiency,chemical stability,and conductivity.The extensive discussion is structured into a progression from noble metals to base metal compounds such as oxides,alloys,phosphides,chalcogenides,hydroxides,and nitrides,MXene-based complexes with a concise examination of hybrid electrocatalysts.In addition,proton exchange membranes,anion exchange membranes,alkaline water electrolyzers,and high-temperature water electrolyzers were potential contributors to seawater’s electrolysis.An extensive assessment of the techno-feasibility,economic insights,and future suggestions was done to commercialize the most efficient electrocatalytic systems for hydrogen production.This review is anticipated to provide academics,environmentalists,and industrial researchers with valuable ideas for constructing and modifying seawater-based electrocatalysts. 展开更多
关键词 Seawater splitting Hydrogen production ELECTROLYSIS ELECTROCATALYSTS Electrolyzers Techno-feasible analysis Review
下载PDF
Recent advances of bismuth-based electrocatalysts for CO_(2)reduction:Strategies,mechanism and applications 被引量:1
11
作者 Xiao-Du Liang Na Tian +2 位作者 Sheng-Nan Hu Zhi-You Zhou Shi-Gang Sun 《Materials Reports(Energy)》 2023年第2期4-26,I0002,共24页
Electrocatalytic CO_(2)reduction reaction(CO_(2)RR),driven by clean electric energy such as solar and wind,can not only alleviate environmental greenhouse effect stemming from excessive CO_(2)emissions,but also realiz... Electrocatalytic CO_(2)reduction reaction(CO_(2)RR),driven by clean electric energy such as solar and wind,can not only alleviate environmental greenhouse effect stemming from excessive CO_(2)emissions,but also realize the storage of renewable energy,for it guarantees the production of value-added chemicals and fuels.Among CO_(2)RR products,formic acid shows great advantages in low energy consumption and high added-value,and thus producing formic acid is generally considered as a profitable line for CO_(2)RR.Bismuth-based electrocatalysts exhibit high formic acid selectivity in CO_(2)RR.Herein,we review the recent progress in bismuth-based electrocatalysts for CO_(2)RR,including material synthesis,performance optimization/validation,and electrolyzers.The effects of morphologies,structure,and composition of bismuth-based electrocatalysts on CO_(2)RR performance are highlighted.Simultaneously,in situ spectroscopic characterization and DFT calculations for reaction mechanism of CO_(2)RR on Bi-based catalysts are emphasized.The applications and optimization of electrolyzers with high current density for CO_(2)RR are summarized.Finally,conclusions and future directions in this field are prospected. 展开更多
关键词 Bismuth-based electrocatalysts Electrochemical CO_(2)reduction reaction FORMATE Structure-activity relationship ELECTROLYZER
下载PDF
Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting(DSS)
12
作者 Abdul Malek Xu Lu +2 位作者 Paul R.Shearing Dan J.L.Brett Guanjie He 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期989-1005,共17页
Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surfa... Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surface is covered with water, there is inadequacy of freshwater in most parts of the world. Hence, splitting seawater instead of freshwater could be a truly sustainable alternative. However, direct seawater splitting faces challenges because of the complex composition of seawater. The composition, and hence, the local chemistry of seawater may vary depending on its origin, and in most cases, tracking of the side reactions and standardizing and customizing the catalytic process will be an extra challenge. The corrosion of catalysts and competitive side reactions due to the presence of various inorganic and organic pollutants create challenges for developing stable electro-catalysts. Hence, seawater splitting generally involves a two-step process, i.e., purification of seawater using reverse osmosis and then subsequent fresh water splitting. However, this demands two separate chambers and larger space, and increases complexity of the reactor design. Recently, there have been efforts to directly split seawater without the reverse osmosis step. Herein, we represent the most recent innovative approaches to avoid the two-step process, and compare the potential application of membrane-assisted and membrane-less electrolyzers in direct seawater splitting(DSS). We particularly discuss the device engineering, and propose a novel electrolyzer design strategies for concentration gradient based membrane-less microfluidic electrolyzer. 展开更多
关键词 Electrocatalytic seawater splitting Direct seawater splitting Osmosis Concentration cells Membrane-less electrolyzer Microfluidic electrolyzer
下载PDF
Moderate heat treatment of CoFe Prussian blue analogues for enhanced oxygen evolution reaction performance
13
作者 Fangyuan Diao Mikkel Rykær Kraglund +4 位作者 Huili Cao Xiaomei Yan Pei Liu Christian Engelbrekt Xinxin Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期476-486,I0013,共12页
Prussian blue analogues(PBAs) with inherent ordered structures and abundant metal ion sites are widely explored as precursors for various electrochemical applications,including oxygen evolution reaction(OER).Using a r... Prussian blue analogues(PBAs) with inherent ordered structures and abundant metal ion sites are widely explored as precursors for various electrochemical applications,including oxygen evolution reaction(OER).Using a range of characterization techniques including Fourier-transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and energy dispersive spectroscopy(EDS),this work discloses the process of replacement of K^(+)by NH4^(+)in the interstitial spaces of the CoFe PBA by a hot aqueous urea solution,which influences the transformation of PBAs under further heat treatment and the OER performance of the deriva tives.After heat treatment at 400℃ under Ar flow,high-resolution transmission electron microscopy(HRTEM) images reveal that CoFe alloy nanoparticles grew on the crystalline cubes of CoFe PBA with K^(+),while CoFe PBA cubes with NH4^(+)become amorphous.Besides,the derivative of CoFe PBA with NH4^(+)(Ar-U-CoFe PBA) performs better than the derivative of CoFe PBA with K^(+)(Ar-CoFe PBA) in OER,registering a lower overpotential of 305 mV at 10 mA cm^(-2),a smaller Tafel slope of 36.1 mV dec^(-1),and better stability over a testing course of 20 h in 1.0 M KOH.A single-cell alkaline electrolyzer,using Ar-U-CoFe PBA and Pt/C for the anodic and cathodic catalyst,respectively,requires an initial cell voltage of 1.66 V to achieve 100 mA cm^(-2)at 80℃,with negligible degradation after100 h. 展开更多
关键词 Prussian blue analogues PBA derivatives Oxygen evolution reaction ELECTROLYZER
下载PDF
Technical factors affecting the performance of anion exchange membrane water electrolyzer
14
作者 Xun Zhang Yakang Li +3 位作者 Wei Zhao Jiaxin Guo Pengfei Yin Tao Ling 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2259-2269,共11页
Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind ... Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved. 展开更多
关键词 hydrogen production anion exchange membrane water electrolyzer CATALYST membrane electrode assembly
下载PDF
Layered power scheduling optimization of PV hydrogen production system considering performance attenuation of PEMEL
15
作者 Yanhui Xu Haowei Chen 《Global Energy Interconnection》 EI CSCD 2023年第6期714-725,共12页
To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for powe... To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for power scheduling in hydrogen production systems under the scenario of photovoltaic(PV)electrolysis of water.First,voltage and performance attenuation models of the PEMEL are proposed,and the degradation cost of the electrolyzer under a fluctuating input is considered.Then,the calculation of the investment and operating costs of the hydrogen production system for a typical day is based on the life cycle cost.Finally,a layered power scheduling optimization method is proposed to reasonably distribute the power of the electrolyzer and energy storage system in a hydrogen production system.In the up-layer optimization,the PV power absorbed by the hydrogen production system was optimized using MALTAB+Gurobi.In low-layer optimization,the power allocation between the PEMEL and battery energy storage system(BESS)is optimized using a non-dominated sorting genetic algorithm(NSGA-Ⅱ)combined with the firefly algorithm(FA).A better optimization result,characterized by lower degradation and total costs,was obtained using the method proposed in this study.The improved algorithm can search for a better population and obtain optimization results in fewer iterations.As a calculation example,data from a PV power station in northwest China were used for optimization,and the effectiveness and rationality of the proposed optimization method were verified. 展开更多
关键词 PV electrolysis of water Proton exchange membrane electrolyzer Performance attenuation Degradation cost Power scheduling optimization
下载PDF
Accelerating net-zero carbon emissions by electrochemical reduction of carbon dioxide
16
作者 Fan He Sirui Tong +4 位作者 Zhouyang Luo Haoran Ding Ziye Cheng Chenxi Li Zhifu Qi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期398-409,共12页
Electroreduction of CO_(2)shows great potential for global CO_(2)utilization and uptake when collaborated with renewable electricity.Recent advances have been achieved in fundamental understanding and electrocatalyst ... Electroreduction of CO_(2)shows great potential for global CO_(2)utilization and uptake when collaborated with renewable electricity.Recent advances have been achieved in fundamental understanding and electrocatalyst development for CO_(2)electroreduction.We think this research area has progressed to the stage where significant efforts can focus on translating the obtained knowledge to the development of largescale electrolyzers,which have the potential to accelerate the transition of the current energy system into a sustainable and zero-carbon emission energy structure.In this perspective paper,we first critically evaluate the advancement of vapor-feed devices that use CO_(2)as reactants,from the point of view of industry applications.Then,by carefully comparing their performance to the state-of-the-art water electrolyzers which are well-established technology providing realistic performance targets,we looped back and discussed the remaining challenges including electrode catalysts,reaction conditions,mass transporting,membrane,device durability,operation mode,and so on.Finally,we provide perspectives on the challenges and suggest opportunities for generating fundamental knowledge and achieving technological progress toward the development of practical CO_(2)electrolyzers for the goal of building lowcarbon or/and net carbon-free economies. 展开更多
关键词 CO_(2)emission Energy storage CO_(2)electroreduction CO_(2)electrolyzer Scale up
下载PDF
CO_(2)electrolysis:Advances and challenges in electrocatalyst engineering and reactor design
17
作者 Jiayi Lin Yixiao Zhang +1 位作者 Pengtao Xu Liwei Chen 《Materials Reports(Energy)》 2023年第2期82-102,I0003,共22页
Electrochemical reduction of CO_(2)(CO_(2)RR)coupled with renewable electrical energy is an attractive way of upgrading CO_(2)to value-added chemicals and closing the carbon cycle.However,CO_(2)RR electrocatalysts sti... Electrochemical reduction of CO_(2)(CO_(2)RR)coupled with renewable electrical energy is an attractive way of upgrading CO_(2)to value-added chemicals and closing the carbon cycle.However,CO_(2)RR electrocatalysts still suffer from high overpotential,and the complex reaction pathways of CO_(2)RR often lead to mixed products.Early research focuses on tuning the binding of reaction intermediates on electrocatalysts,and recent efforts have revealed that the design of electrolysis reactors is equally important for efficient and selective CO_(2)RR.In this review,we present an overview of recent advances and challenges toward achieving high activity and high selectivity in CO_(2)RR at ambient conditions,with a particular focus on the progress of CO_(2)RR electrocatalyst engineering and reactor design.Our discussion begins with three types of electrocatalysts for CO_(2)RR(noble metalbased,none-noble metal-based,and metal-free electrocatalysts),and then we examine systems-level strategies toward engineering specific components of the electrolyzer,including gas diffusion electrodes,electrolytes,and polymer electrolyte membranes.We close with future perspectives on catalyst development,in-situ/operando characterization,and electrolyzer performance evaluation in CO_(2)RR studies. 展开更多
关键词 Carbon dioxide utilization Carbon dioxide electrochemical reduction Electrocatalyst design Electrolyzer design Gas diffusion electrodes Electrolyte effects Polymer electrolyte membranes
下载PDF
Advances and challenges of electrolyzers for large-scale CO_(2) electroreduction
18
作者 Lei Yuan Shaojuan Zeng +2 位作者 Xiangping Zhang Xiaoyan Ji Suojiang Zhang 《Materials Reports(Energy)》 2023年第1期1-18,I0002,共19页
CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at desi... CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at design and understanding of catalytic materials and electrolyte systems,the CO_(2) ER performance(such as current density,selectivity,stability,CO_(2) conversion,etc.)has been continually increased.Unfortunately,there has been relatively little attention paid to the large-scale CO 2 electrolyzers,which stand just as one obstacle,alongside series-parallel integration,challenging the practical application of this infant technology.In this review,the latest progress on the structures of low-temperature CO_(2) electrolyzers and scale-up studies was systematically overviewed.The influence of the CO_(2) electrolyzer configurations,such as the flow channel design,gas diffusion electrode(GDE)and ion exchange membrane(IEM),on the CO_(2) ER performance was further discussed.The review could provide inspiration for the design of large-scale CO_(2) electrolyzers so as to accelerate the industrial application of CO_(2) ER technology. 展开更多
关键词 CO_(2) electroreduction LARGE-SCALE CO_(2) electrolyzer Flow channel Gas diffusion electrode Ion exchange membrane
下载PDF
Studies of non-metallic organic disinfectants on inactivation of avian influenza viruses
19
作者 Huaguang Lu 《Health》 2013年第8期1-6,共6页
Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydro... Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydrogen Peroxide, Clorox Germicidal Bleach and Clidox-S. The effectiveness of these disinfectants was studied against various subtypes of avian influenza virus (AIV). The virus-disinfectant mixtures were prepared in serial dilutions of each disinfectant with a constant virus titer and incubated at ambient temperature in different time intervals for virus inactivation. The virus inactivation results were determined by virus recovery in embryonating chicken eggs. Among the six different kinds of nonmetallic disinfectants obtained for this research project, Neutral Electrolyzed Water, “M22” solution, Clorox Germicidal Bleach and Clidox-S were effectively inactivated AIV with appropriate working dilutions and reaction times. Superoxy Food Wash disinfectant and Hydrogen Peroxide were found having limited effect on virus inactivation with extended exposure times of more than 2 hours. These research findings provide scientific data to poultry industry with guidelines to select and use non-metallic organic disinfectants for poultry flock sanitation and disinfection to effectively prevent and control of avian influenza outbreaks. 展开更多
关键词 AVian Influenza Virus Non-Metallic DISINFECTANTS Neutral electrolyzed Water M22 ORGANIC DISINFECTANT Superoxy Food WASH Hydrogen Peroxide Clorox Germicidal BLEACH Clidox-S
下载PDF
Biomass derived porous nitrogen doped carbon for electrochemical devices 被引量:4
20
作者 Litao Yan Jiuling Yu +2 位作者 Jessica Houston Nancy Flores Hongmei Luo 《Green Energy & Environment》 SCIE 2017年第2期84-99,共16页
Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without... Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co-or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li-S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction(oxygen reduction and evolution reactions, hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. 展开更多
关键词 BIOMASS Nitrogen doped carbon BATTERIES Fuel cell ELECTROLYZER
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部