To deal with the inherent nonlinearity and open-loop instability of the electromagnetic suspension(EMS) system,a new nonlinear control method is proposed.The simulation results show that,for a PID controller,the ove...To deal with the inherent nonlinearity and open-loop instability of the electromagnetic suspension(EMS) system,a new nonlinear control method is proposed.The simulation results show that,for a PID controller,the over-shoot of the system response to an airgap step disturbance is about 3 mm,and the transient time is 6 s;however,for the proposed nonlinear controller,there is no overshoot and transient time within 2 s.The proposed method has a faster response and stronger robustness.With a designed bi-DSP suspension controller,this nonlinear control method was implemented on the Shanghai Urban Maglev Test Line(SUMTL) to validate its effectiveness and feasibility.展开更多
The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urge...The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urgent requirements for the suspension system.The automotive industry and researchers favor active energy regeneration suspension technology with safety,comfort,and high energy regenerative efficiency.In this paper,we review the research progress of the structure form,optimization method,and control strategy of electromagnetic energy regenerative suspension.Specifically,comparing the pros and cons of the existing technology in solving the contradiction between dynamic performance and energy regeneration.In addition,the development trend of electromagnetic energy regenerative suspension in the field of structure form,optimization method,and control technology prospects.展开更多
An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subje...An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future.展开更多
High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is p...High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.展开更多
The operating speed of the commercial electromagnetic suspension(EMS)maglev train has been over 430 km/h,making it the fastest means of land transportation.With the increasing demands of people traveling,it is necessa...The operating speed of the commercial electromagnetic suspension(EMS)maglev train has been over 430 km/h,making it the fastest means of land transportation.With the increasing demands of people traveling,it is necessary to further improve the operating speed of maglev trains.Aiming to examine whether the existing EMS system can meet the requirements of ultra-highspeed operation(more than 600 km/h),the electromagnetic characteristics of an EMS linear motor under the operating speed of 600–1000 km/h fed by a square-wave voltage supply is investigated in this article.First,an electromagnetic field model of the EMS system under the square-wave voltage supply is established to investigate its electromagnetic performance,e.g.,the characteristics of phase current,the magnetic flux density,and the electromagnetic force.Second,the relationship between the harmonic components of the air-gap magnetic flux density and electromagnetic force is investigated using the two-dimensional fast Fourier transform(2D-FFT)to reveal the mechanism of electromagnetic force ripple.Third,to address the issues of excessive armature current density and significant electromagnetic force ripple,the linear motor is re-designed by enlarging the stator slot area and reshaping the mover's main magnetic poles.Furthermore,the Taguchi method is used to further improve the electromagnetic characteristics of the linear electric motor.Finally,the effectiveness of the proposed optimal design is validated by the finite-element analysis(FEA)based co-simulation.展开更多
文摘To deal with the inherent nonlinearity and open-loop instability of the electromagnetic suspension(EMS) system,a new nonlinear control method is proposed.The simulation results show that,for a PID controller,the over-shoot of the system response to an airgap step disturbance is about 3 mm,and the transient time is 6 s;however,for the proposed nonlinear controller,there is no overshoot and transient time within 2 s.The proposed method has a faster response and stronger robustness.With a designed bi-DSP suspension controller,this nonlinear control method was implemented on the Shanghai Urban Maglev Test Line(SUMTL) to validate its effectiveness and feasibility.
基金supported by the National Natural Science Foundation of China (51975341,51875326,and 51905319)Shandong Provincial Natural Science Foundation,China (ZR2021QE180)+1 种基金the Young Technology Talent Supporting Project of Shandong Province (2021KJ083)SDUT&Zhangdian District Integration Development Project (2021JSCG0015).
文摘The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urgent requirements for the suspension system.The automotive industry and researchers favor active energy regeneration suspension technology with safety,comfort,and high energy regenerative efficiency.In this paper,we review the research progress of the structure form,optimization method,and control strategy of electromagnetic energy regenerative suspension.Specifically,comparing the pros and cons of the existing technology in solving the contradiction between dynamic performance and energy regeneration.In addition,the development trend of electromagnetic energy regenerative suspension in the field of structure form,optimization method,and control technology prospects.
基金supporting S. Zhou to visit University of Southampton for one year to engage in this researchHarbin Engineering University for supporting J. T. Xing to visit Harbin Engineering University (Grant HEUCF160104)
文摘An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future.
基金supported by the National Natural Science Foundation of China(Grant 62273029).
文摘High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.
基金supported by the National Key R&D Program of China(Grant No.2023YFB4302500)。
文摘The operating speed of the commercial electromagnetic suspension(EMS)maglev train has been over 430 km/h,making it the fastest means of land transportation.With the increasing demands of people traveling,it is necessary to further improve the operating speed of maglev trains.Aiming to examine whether the existing EMS system can meet the requirements of ultra-highspeed operation(more than 600 km/h),the electromagnetic characteristics of an EMS linear motor under the operating speed of 600–1000 km/h fed by a square-wave voltage supply is investigated in this article.First,an electromagnetic field model of the EMS system under the square-wave voltage supply is established to investigate its electromagnetic performance,e.g.,the characteristics of phase current,the magnetic flux density,and the electromagnetic force.Second,the relationship between the harmonic components of the air-gap magnetic flux density and electromagnetic force is investigated using the two-dimensional fast Fourier transform(2D-FFT)to reveal the mechanism of electromagnetic force ripple.Third,to address the issues of excessive armature current density and significant electromagnetic force ripple,the linear motor is re-designed by enlarging the stator slot area and reshaping the mover's main magnetic poles.Furthermore,the Taguchi method is used to further improve the electromagnetic characteristics of the linear electric motor.Finally,the effectiveness of the proposed optimal design is validated by the finite-element analysis(FEA)based co-simulation.