期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Corrosion and wear properties of micro-arc oxidation treated Ti6Al4V alloy prepared by selective electron beam melting 被引量:15
1
作者 Xin YANG Wan-lin WANG +4 位作者 Wen-jun MA Yan WANG Jun-gang YANG Shi-feng LIU Hui-ping TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2132-2142,共11页
In order to analyze the effect of voltage during micro-arc oxidation(MAO)on corrosion and wear properties of Ti6Al4V(TC4),the MAO technology was employed to treat TC4 samples fabricated by selective electron beam melt... In order to analyze the effect of voltage during micro-arc oxidation(MAO)on corrosion and wear properties of Ti6Al4V(TC4),the MAO technology was employed to treat TC4 samples fabricated by selective electron beam melting(SEBM)at the voltages of 400,420 and 450 V.The results show that the metastable anatase phase gradually transforms to rutile phase with oxidation time and temperature increasing.The surface morphology of coating contains numerous micropores with uniform size distribution.Cracks and pores over 10μm are found on MAO-TC4 sample with applied voltage of 450 V.The thickness of MAO coating is positively correlated with the voltage.The corrosion resistance and wear resistance are related to phase composition,micropore size distribution on the surface and film thickness.When the voltage is 420 V,the coating shows the smallest corrosion current density(0.960×10^-7 A/cm^2)and the largest resistance(7.17×10^5Ω·cm^2).Under the same load condition,the coating exhibits larger friction coefficient and wear loss than the TC4 substrate.With the increase of voltage,the wear mechanism of the coating changes from abrasive wear to adhesive wear,and the adhesive wear is intensified at applied voltage of 450 V,with a maximum friction coefficient of 0.821. 展开更多
关键词 selective electron beam melting micro-arc oxidation TC4 alloy CORROSION wear property
下载PDF
Impurities evaporation from metallurgical-grade silicon in electron beam melting process 被引量:5
2
作者 WANG Qiang DONG Wei TAN Yi JIANG Dachuan ZHANG Cong PENG Xu 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期274-277,共4页
The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly ... The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly after melting, and magnesium is partially removed. However, no significant change in content for boron and iron has been found. Langmuir's equation and Henry law were used to derive the removal effi-ciency for each impurity element. The free surface temperature was estimated by the Hertz-Knudsen-Langmuir equation and silicon's vapor pressure equation. Good agreement was found between measured and calculated impurities' removal efficiency for phosphorus, calcium and aluminum, magnesium, boron and iron. The deviation between the two results was also analyzed in depth. 展开更多
关键词 electron beam melting SILICON EVAPORATION IMPURITIES removal efficiency
下载PDF
Mechanical properties of TiAl fabricated by electron beam melting-A review 被引量:6
3
作者 Bo-chao Lin Wei Chen 《China Foundry》 SCIE CAS 2021年第4期307-316,共10页
As a typical intermetallic material,TiAl is inevitably difficult to process by conventional methods.Additive manufacturing(AM)has recently become a new option for making net-shape TiAl components.Among all AM methods,... As a typical intermetallic material,TiAl is inevitably difficult to process by conventional methods.Additive manufacturing(AM)has recently become a new option for making net-shape TiAl components.Among all AM methods,electron beam melting(EBM)shows the potential to make TiAl components with good mechanical properties and is used for low pressure turbine blades.The mechanical properties,including tensile and compression properties,fracture toughness,fatigue and creep properties of EBM TiAl are reviewed and compared to the conventionally fabricated alloys.Results show that the tensile strength of EBM alloys is higher than cast alloys,and other properties are comparable to the cast/forged alloys.The sensitivity of mechanical properties and microstructure to EBM processing parameters is presented.Issues including layered microstructure,anisotropy in mechanical properties,and fatigue failure from defects are also reviewed.Finally,some opportunities and challenges of EBM TiAl are identified. 展开更多
关键词 additive manufacturing electron beam melting TiAl alloy mechanical properties TENSILE FATIGUE
下载PDF
A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting 被引量:4
4
作者 逯圣路 汤慧萍 +3 位作者 马前 洪权 曾立英 D.H.StJohn 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2857-2863,共7页
A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and... A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and textures were studied using scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and electron backscattered diffraction(EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50-250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen(7×10-4, mass fraction) and yttrium(10-3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles. 展开更多
关键词 titanium alloys additive manufacturing rare earth elements YTTRIUM selective electron beam melting
下载PDF
Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti-6Al-4V alloy fabricated by electron beam melting 被引量:2
5
作者 Liang Lan Ruyi Xin +2 位作者 Xinyuan Jin Shuang Gao Bo He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1780-1787,共8页
Laser shock peening(LSP)is an attractive post-processing method to tailor surface microstructure and enhance mechanical performances of additive manufactured(AM)components.The effects of multiple LSP treatments on the... Laser shock peening(LSP)is an attractive post-processing method to tailor surface microstructure and enhance mechanical performances of additive manufactured(AM)components.The effects of multiple LSP treatments on the microstructure and mechanical properties of Ti-6Al-4V part produced by electron beam melting(EBM),as a mature AM process,were studied in this work.Microstructure,surface topography,residual stress,and tensile performance of EBM-manufactured Ti-6Al-4V specimens were systematically analyzed subjected to different LSP treatments.The distribution of porosities in EBM sample was assessed via X-ray computed tomography.The results showed that EBM samples with two LSP treatments possessed a lower porosity value of 0.05%compared to the value of 0.08%for the untreated samples.The strength of EBM samples with two LSP treatments was remarkably raised by 12%as compared with the as-built samples.The grains ofαphase were refined in near-surface layer,and a dramatic increase in the depth and magnitude of compressive residual stress(CRS)was achieved in EBM sample with multiple LSP treatments.The grain refinement ofαphase and CRS with larger depth were responsible for the strength enhancement of EBM samples with two LSP treatments. 展开更多
关键词 additive manufacturing laser shock peening electron beam melting residual stress Ti-6Al-4V alloy mechanical properties
下载PDF
Investigation on gradient material fabrication with electron beam melting based on scanning track control
6
作者 杨尚磊 薛小怀 +1 位作者 楼松年 芦凤桂 《China Welding》 EI CAS 2007年第3期19-22,共4页
A new electron beam control system was developed in a general vacuum electron beam machine by assembling with industrial control computer, programmable logic control (PLC), deflection coil, data acquisition card, po... A new electron beam control system was developed in a general vacuum electron beam machine by assembling with industrial control computer, programmable logic control (PLC), deflection coil, data acquisition card, power amplifier, etc. In this control system, scanning track and energy distribution of electron beam could be edited off-line, real-time adjusted and controlled on-line. Ti-Mo gradient material (GM) with high temperature resistant was fabricated using the technology of electron beam melting. The melting processes include three steps, such as preheating, melting, and homogenizing. The results show that the GM prepared by melting technology has fine appearance, and it has good integrated interface with the Ti alloy. Mo and Ti elements are gradually distributed in the inter.face of the gradient material. The microstructure close to the Ti alloy base metal is α + β basket-waver grain, and the microstructure close to the GM is a single phase of β solid solution. 展开更多
关键词 electron beam melting scanning control system gradient material
下载PDF
Using Cavitation Peening to Improve the Fatigue Life of Titanium Alloy Ti-6Al-4V Manufactured by Electron Beam Melting
7
作者 Mitsuru Sato Osamu Takakuwa +3 位作者 Masaaki Nakai Mitsuo Niinomi Fumio Takeo Hitoshi Soyama 《Materials Sciences and Applications》 2016年第4期181-191,共11页
Although Electron Beam Melting (EBM) is an innovative technology, the fatigue properties of materials manufactured by EBM may be lower than those of casted and wrought materials due to defects and surface roughness. I... Although Electron Beam Melting (EBM) is an innovative technology, the fatigue properties of materials manufactured by EBM may be lower than those of casted and wrought materials due to defects and surface roughness. In order to enhance the fatigue life of components or structures manufactured by EBM, a mechanical surface treatment technology, e.g., peening, would be effective because peening introduces high compressive residual stress at the surface which can extend the fatigue life considerably. In the present study, specimens were manufactured by EBM using titanium alloy Ti-6Al-4V powder. Two types of specimens were prepared: as-built and as-machined specimens. Specimens of each type were treated by cavitation peening or shot peening. The fatigue lives of the specimens were evaluated by a plate bending fatigue tester. The residual stress and surface roughness were also evaluated. The results obtained showed that the fatigue strength of as-built specimens can be improved by 21% by cavitation peening or shot peening, and the fatigue life under particular applied stresses can also be extended by 178% by cavitation peening. 展开更多
关键词 Component electron beam melting TI-6AL-4V Cavitaion Peening Residual Stress FATIGUE
下载PDF
Influence of powder oxidation on powder properties and formability in H13 hot-work steels processed by electron beam melting 被引量:1
8
作者 Wei Liu Yan Wang +3 位作者 Li-xiong Han Ying-kang Wei Hui-ping Tang Shi-feng Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第4期924-932,共9页
The oxygen content of metal powder is decisive for the recyclability of powder.The research on the effect of oxygen content on powder properties and material formability has practical significance for economical produ... The oxygen content of metal powder is decisive for the recyclability of powder.The research on the effect of oxygen content on powder properties and material formability has practical significance for economical production with additive manufacturing while preventing the waste of resources.Here,we deliberately oxidized the powder by baking at high temperature to increase the oxygen content in the powder and gave the calculation method of the oxygen content in the powder oxidation film.The majority of oxygen element was found in the oxide particles in the powder and the oxide flm on the powder surface,which did affect the flowability of the powder.It is worth noting that the increase in the oxygen content does not change the phase of H13 steel,but it can promote the molten pool flow and obtain a smoother surface.The increase in the oxygen content in the powder is not the decisive factor for the formability and defects of the printed samples.It is the combined effect of the powder deformation,the increase in the oxygen content,and the impurity pollution after repeated use,which leads to the limitation of repeated utilization of the powder. 展开更多
关键词 Additive manufacturing electron beam melting H13 steel powder-Powder oxidation
原文传递
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
9
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROSTRUCTURE vickers hardness tribological property
原文传递
Finite Element Prediction of Residual Stress in Rhombic Dodecahedron Ti‑6Al‑4V Titanium Alloy Additively Manufactured by Electron Beam Melting 被引量:1
10
作者 Shangzhou Zhang Yuankang Wang +5 位作者 Bing Zhou Fanchao Meng Hua Zhang Shujun Li Qingmiao Hu Li Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第1期35-47,共13页
In this work,a three-dimensional nonlinear transient thermo-mechanically coupled finite element model(FEM)is established to investigate the variation in temperature and stress fields during electron beam melting(EBM)o... In this work,a three-dimensional nonlinear transient thermo-mechanically coupled finite element model(FEM)is established to investigate the variation in temperature and stress fields during electron beam melting(EBM)of rhombic dodecahedron Ti-6Al-4V alloy.The influence of the processing parameters on the temperature and residual stress evolutions was predicted and verified against existing literature data.The calculated results indicate that the interlayer cooling time has very little effect on both the temperature and stress evolutions,indicating that the interlayer cooling time can be set up as short as possible to reduce manufacturing time.It is presented that the residual stress of the intersection is higher than that of non-intersection.With increasing preheating temperature,the residual stress decreases continuously,which is about 20%–30%for every 50℃rise in temperature.The temperature and stress fields repeated every four layers with the complex periodic scanning strategy.Both x and y-component residual stresses are tensile stresses,while z-component stress is weak compressive or tensile stress in typical paths.It is proposed that the interlayer cooling is necessary to obtain a rhombic dodecahedron with low residual stress.These results can bring insights into the understanding of the residual stress during EBM. 展开更多
关键词 electron beam melting TI-6AL-4V Rhombic dodecahedron Residual stress Finite element analysis Parametric study
原文传递
Low-cost surface modification of a biomedical Zr-2.5Nb alloy fabricated by electron beam melting
11
作者 Caixu Wang Xiaoli Zhao +3 位作者 Shujun Li Lu Liu Deliang Zhang Mitsuo Niinomi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第12期178-188,共11页
The Zr-2.5Nb alloy with a fine microstructure consisting ofαlaths was successfully prepared by electron beam melting(EBM).The thermal oxidation behaviors and kinetics of the as-built,and the EBM-built and hot isostat... The Zr-2.5Nb alloy with a fine microstructure consisting ofαlaths was successfully prepared by electron beam melting(EBM).The thermal oxidation behaviors and kinetics of the as-built,and the EBM-built and hot isostatically pressed(HIPed)Zr-2.5Nb materials in a temperature range of 450-600°C were in-vestigated and compared with those of the alloy prepared by conventional casting and forging.It was found that the oxidation kinetics of the as-built and the forged materials followed the parabolic rate law during isothermal oxidation at 550°C,but the HIPed materials exhibited a parabolic-to-linear kinetic transition,suggesting that the larger grain sizes enhanced the oxidation.The oxide layers of all materials were composed of a large fraction of monoclinic zirconia phase(m-ZrO_(2))and a small fraction of tetrago-nal zirconia phase(t-ZrO_(2)),and transformed from t-ZrO_(2)to m-ZrO_(2)with increasing oxidation time.The surface hardness of the as-built,the forged and the HIPed materials increased from 215,204,and 188 HV before oxidation to 902,1070,and 1137 HV after oxidation,respectively.The cross-sections of the materi-als showed the presence of micropores and microcracks inside the oxide layers with thicknesses ranging from 4 to 8μm.With the oxidation temperature of 600°C and oxidation time duration of 3 h,a dense black m-ZrO_(2)oxide layer with smooth surface and 902 HV hardness was obtained on the EBM as-built Zr-2.5Nb materials. 展开更多
关键词 Zr-2.5Nb alloy electron beam melting Thermal oxidation Oxidation behaviors and kinetics Grain size
原文传递
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies 被引量:112
12
作者 Lawrence E. Murr Sara M. Gaytan +6 位作者 Diana A. Ramirez Edwin Martinez Jennifer Hernandez Krista N. Amato Patrick W. Shindo Francisco R. Medina Ryan B. Wicker 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第1期1-14,共14页
Lawrence E. Murr is Mr.J Mrs. Macintosh Murehison Professor and Chairman of the Department of Metallurgical and Materials Engineering and Ph.D. Program Director in the Materials Research Technology Institute at The Un... Lawrence E. Murr is Mr.J Mrs. Macintosh Murehison Professor and Chairman of the Department of Metallurgical and Materials Engineering and Ph.D. Program Director in the Materials Research Technology Institute at The University of Texas at El Paso. Dr. Murr received his B.Sc. in physical science from Albright College, and his B.S.E.E. in electronics, his M.S. in engineering mechanics, and his Ph.D. in solidstate science, all from the Pennsylvania State University. Dr. Murr has published 20 books, over 750 scientific and technical articles in a wide range of research areas in materials science and engineering, environmental science and engineering, manufacturing science and engineering (especially rapid prototype/layered manufacturing), 展开更多
关键词 Selective laser melting electron beam melting Additive manufacturing MICROSTRUCTURES Microstructural architecture
原文传递
Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading 被引量:10
13
作者 A.Mohammadhosseini S.H.Masood +1 位作者 D.Fraser M.Jahedi 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第3期232-243,共12页
This paper documents an investigation into the compressive deformation behaviour of electron beam melting (EBM) processing titanium alloy (Ti-6A1-4V) parts under high strain loading conditions. The dynamic compres... This paper documents an investigation into the compressive deformation behaviour of electron beam melting (EBM) processing titanium alloy (Ti-6A1-4V) parts under high strain loading conditions. The dynamic compression tests were carried out at a high strain rate of over 1 × 10^3/S using the split Hopkinson pressure bar (SHPB) test system and for comparison the quasi-static tests were performed at a low strain rate of 1×10^-3/s using a numerically controlled hydraulic materials test system (MTS) testing machine at an ambient temperature. Furthermore, microstructure analysis was carried out to study the failure mechanisms on the deformed samples. The Vickers micro-hardness values of the samples were measured before and after the compression tests. The microstructures of the compressed samples were also characterized using optical microscopy. The particle size distribution and chemical composition of powder material, which might affect the mechanical properties of the specimens, were investigated. In addition, the numerical simulation using commercial explicit finite element software was employed to verify the experimental results from SHPB test system. 展开更多
关键词 Additive manufacturing electron beam melting (EBM) Titanium alloys Split Hopkinson
原文传递
Microstructures and Hardness Properties for β-Phase Ti-24Nb-4Zr-7.9Sn Alloy Fabricated by Electron Beam Melting 被引量:8
14
作者 J.Hernandez S.J.Li +11 位作者 E.Martinez L.E.Murr X.M.Pan K.N.Amato X.Y.Cheng F.Yang C.A.Terrazas S.M.Gaytan Y.L.Hao R.Yang F.Medina R.B.Wicker 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第11期1011-1017,共7页
Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for th... Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for the precursor powder and 2.5 GPa for the solid, EBM-fabricated products. The powder and solid product microstructures were examined by optical and electron microscopy. X-ray diffraction analyses showed that they had bcc β-phase microstructure. However, it was found by transmission electron microscopy that the EBM-fabricated product had plate morphology with space -100-200 nm. Although the corresponding selected area diffraction patterns can be indexed by β-phase plus α"-martensite with orthorhombic crystal structure, the dark-field analyses failed to observe the α"-martensite. Such phenomenon was also found in deformed gum metals and explained by stress-induced diffusion scattering due to phonon softening. 展开更多
关键词 Biomedical titanium alloy β-Martensite electron beam melting HARDNESS Optical and electron microscopy
原文传递
Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects 被引量:13
15
作者 Krishna Chaitanya Nune Shujun Li R. Devesh Kumar Misra 《Science China Materials》 SCIE EI CSCD 2018年第4期455-474,共20页
We elucidate here the process-structure-property relationships in three-dimensional(3 D) implantable titanium alloy biomaterials processed by electron beam melting(EBM) that is based on the principle of additive m... We elucidate here the process-structure-property relationships in three-dimensional(3 D) implantable titanium alloy biomaterials processed by electron beam melting(EBM) that is based on the principle of additive manufacturing. The conventional methods for processing of biomedical devices including freeze casting and sintering are limited because of the difficulties in adaptation at the host site and difference in the micro/macrostructure, mechanical, and physical properties with the host tissue. In this regard, EBM has a unique advantage of processing patient-specific complex designs, which can be either obtained from the computed tomography(CT) scan of the defect site or through a computeraided design(CAD) program. This review introduces and summarizes the evolution and underlying reasons that have motivated 3 D printing of scaffolds for tissue regeneration.The overview comprises of two parts for obtaining ultimate functionalities. The first part focuses on obtaining the ultimate functionalities in terms of mechanical properties of 3 D titanium alloy scaffolds fabricated by EBM with different characteristics based on design, unit cell, processing parameters, scan speed, porosity, and heat treatment. The second part focuses on the advancement of enhancing biological responses of these 3 D scaffolds and the influence of surface modification on cell-material interactions. The overview concludes with a discussion on the clinical trials of these 3 D porous scaffolds illustrating their potential in meeting the current needs of the biomedical industry. 展开更多
关键词 electron beam melting 3D printing tissue engineering mechanical properties BIOCOMPATIBILITY
原文传递
Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting 被引量:6
16
作者 Bang Xiao Wenpeng Jia +2 位作者 Huiping Tang Jian Wang Lian Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期54-63,共10页
WMoTaNbTi RHEAs formed by SEBM with negative defocus distance were investigated.Four scanning speeds were applied,an electron beam with scanning speed at 2.5 m/s completely fused the premixed WMoTaNb alloyed powder an... WMoTaNbTi RHEAs formed by SEBM with negative defocus distance were investigated.Four scanning speeds were applied,an electron beam with scanning speed at 2.5 m/s completely fused the premixed WMoTaNb alloyed powder and pure Ti powder.Significant vaporization of Nb and Ti elements happened during the formation of WMoTaNbTi RHEAs,however,the single BCC phase remains stable.Weakened solid-solute strengthening caused by elemental vaporization,dropping percentage of Nb and Ti solutes in the matrix as well as improved ductilizing effects with decreasing scanning speeds leads to falling microhardness and better local ductility.Microhardness of scanning speed at 4.0 m/s,3.5 m/s,3.0 m/s and 2.5 m/s is 578±17 HV,576±12 HV,573±10 HV and 511±2 HV,respectively.The as-deposited WMoTaNbTi RHEA formed at a scanning speed of 2.5 m/s displays ultimate strength of 1312 MPa. 展开更多
关键词 Refractory high-entropy alloys Selective electron beam melting Solidification cracking POROSITY Solid-solution strengthening
原文传递
Mechanism of removing ferrum impurity in lanthanum refined byelectron beam melting 被引量:4
17
作者 Siming Pang Wenli Lu +5 位作者 Zhenfei Yang Xiaowei Zhang Dehong Chen Daogao Wu Lin Zhou Ruiying Miao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第7期875-880,I0005,共7页
Removal feasibility of Fe impurity form La metal by electron beam melting(EBM) was analyzed,the removal mechanism was discussed,and the verification experiments were carried out in this study.The research results indi... Removal feasibility of Fe impurity form La metal by electron beam melting(EBM) was analyzed,the removal mechanism was discussed,and the verification experiments were carried out in this study.The research results indicate that,the evaporation coefficient of Fe in La metal is 35-175 at 1800-3000 K,and Fe impurity can be removed by EBM;the removal efficiency of Fe impurity is improved with the increasing EBM power,the Fe concentration is significantly decreased from 1482 to 0.1 μg/g under 50 kW and 2400 s;the reaction of Fe removal by EBM follows the first-order rate law,and Fe impurity is removed by evaporation as a single atom;transport from the La melt to the liquid boundary layer of the Fe atom is rate-controlling step in the EBM when the EBM power is 30-50 kW. 展开更多
关键词 Lanthanum metal PURIFICATION Fe impurity DYNAMICS electron beam melting Rare earths
原文传递
Finite element analysis of temperature and residual stress profiles of porous cubic Ti-6Al-4V titanium alloy by electron beam melting 被引量:4
18
作者 Xiaochun He Yang Li +4 位作者 Yongjie Bi Xiaomei Liu Bing Zhou Shangzhou Zhang Shujun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第9期191-200,共10页
The temperature and stress profiles of porous cubic Ti-6Al-4V titanium alloy grids by additive manufacturing via electron beam melting(EBM)based on finite element(FE)method were investigated.Three-dimensional FE model... The temperature and stress profiles of porous cubic Ti-6Al-4V titanium alloy grids by additive manufacturing via electron beam melting(EBM)based on finite element(FE)method were investigated.Three-dimensional FE models were developed to simulate the single-layer and five-layer girds under annular and lateral scanning.The results showed that the molten pool temperature in five-layer girds was higher than that in single-layer grids owing to the larger mass and higher heat capacity.More energies accumulated by the longer scanning time for annular path than lateral path led to the higher temperature and steeper temperature gradient.The thermal stress drastically fluctuated during EBM process and the residual stress decreased with the increase of powder layer where the largest stress appeared at the first layer along the build direction.The stress under lateral scanning was slightly larger but relatively more homogeneous distribution than those under annular scanning.The stress distribution showed anisotropy and the maximum Von Mises stress occurred around the central node.The stress profiles were explained by the temperature fields and grids structure. 展开更多
关键词 electron beam melting Ti-6Al-4V titanium alloy Porous cubic grids Finite element analysis Temperature field Stress field
原文传递
Microstructure and high-temperature tensile property of TiAl alloy produced by selective electron beam melting 被引量:2
19
作者 Hang-Yu Yue Hui Peng +2 位作者 Yong-Jun Su Xiao-Peng Wang Yu-Yong Chen 《Rare Metals》 SCIE EI CAS CSCD 2021年第12期3635-3644,共10页
The microstructure and high-temperature tensile property of a Ti-47Al-2Cr-2 Nb alloy fabricated via selective electron beam melting(SEBM) with hatch spacings of 85,100,and 115 μm were systematically investigated.When... The microstructure and high-temperature tensile property of a Ti-47Al-2Cr-2 Nb alloy fabricated via selective electron beam melting(SEBM) with hatch spacings of 85,100,and 115 μm were systematically investigated.When the hatch spacing increased from 85 to 115 μm,the microstructure comprising the horizontal cross section changed from coarse lamellar(y/B2) colonies to an inhomogeneous structure and the grain morphology transformed from elongated grains to inhomogeneous and equiaxed grains along the building direction of the vertical cross section.The boundary population of the SEBMproduced TiAl alloy samples was dominated by high-angle grain boundaries(≥ 15°),and the volume fraction of these boundaries decreased with hatch spacing increasing.Additionally,the as-built TiAl alloy sample produced under a spacing of 100 μm exhibited the highest room-and elevated-temperature tensile strengths,with the ultimate tensile strength at room temperature(642 MPa) increasing to 674 MPa at 700 ℃.Furthermore,the mechanism of anomalous strengthening at 700 ℃ was discussed in detail. 展开更多
关键词 Selective electron beam melting TiAl alloy Hatch spacing MICROSTRUCTURE Tensile property
原文传递
Effect of HIP Treatment on Fatigue Crack Growth Behavior of Ti–6Al–4V Alloy Fabricated by Electron Beam Melting 被引量:2
20
作者 Yan Liu Jun Zhang +5 位作者 Shu-Jun Li Wen-Tao Hou Hao Wang Qin-Si Xu Yu-Lin Hao Rui Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第12期1163-1168,共6页
The effect of hot isostatic pressing treatment on the fatigue crack growth behavior of Ti-6Al-4V alloy fabricated by electron beam melting was investigated. The results indicate that the fatigue crack growth rate of t... The effect of hot isostatic pressing treatment on the fatigue crack growth behavior of Ti-6Al-4V alloy fabricated by electron beam melting was investigated. The results indicate that the fatigue crack growth rate of the HIPed samples is higher than that of the as-fabricated one under certain stress intensity factor (AK 〈 18 MPa m^1/2). With further increase in AK, the fatigue crack growth rates of the studied two samples become similar. The variation of α lamella thickness and the pore defects distribution have an effect on the fatigue crack growth rates in the studied samples, and the latter plays the dominant role. 展开更多
关键词 electron beam melting Ti–6Al–4V Fatigue crack growth rate a Lamella Pores
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部