WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-b...WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concen- tration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range,and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identify a fiat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a fiat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.展开更多
We investigate two-photon transitions to the electron-hole scattering continuum in monolayer transition-metal dichalcogenides, and identify two contributions to this nonlinear optical process with opposite circularly ...We investigate two-photon transitions to the electron-hole scattering continuum in monolayer transition-metal dichalcogenides, and identify two contributions to this nonlinear optical process with opposite circularly polarized valley selection rules. In the non-interacting limit, the competition between the two contributions leads to a crossover of the selection rule with the increase of the two-photon energy. With the strong Coulomb interaction between the electron and hole, the two contributions excite electron-hole scattering states in orthogonal angular momentum channels, while the strength of the transition can be substantially enhanced by the interaction. Based on this picture of the two-photon transition, the second harmonic generation(SHG) in the electron-hole continuum is analyzed, where the Coulomb interaction is shown to greatly alter the relative strength of different cross-circular polarized SHG processes. Valley current injection by the quantum interference of one-photon and two-photon transition is also investigated in the presence of the strong Coulomb interaction, which significantly enhances the injection rate.展开更多
The electron-hole exchange interaction significantly influences the optical properties of excitons and radiative decay. However, exciton dynamics in luminescent carbon dots (Cdots) is still not clear. In this study,...The electron-hole exchange interaction significantly influences the optical properties of excitons and radiative decay. However, exciton dynamics in luminescent carbon dots (Cdots) is still not clear. In this study, we have developed a simple and efficient one-step strategy to synthesize luminescent Cdots using the pyrolysis of oleylamine. The sp^2 clusters of a few aromatic rings are responsible for the observed blue photoluminescence. The size of these clusters can be tuned by controlling the reaction time, and the energy gap between the π-π* states of the sp^2 domains decreases as the sp^2 cluster size increases. More importantly, the strong electron-hole exchange interaction results in the splitting of the exciton states of the sp^2 clusters into the singlet-bright and triplet-dark states with an energy difference ΔE, which decreases with increasing sp^2 cluster size owing to the reduction of the confinement energy and the suppression of the electron-hole exchange interaction.展开更多
Effect of pulse slippage on resonant third harmonic generation of a short pulse laser in electron-hole plasma in the presence of wiggler magnetic field has been investigated.The group velocity mismatch of the third ha...Effect of pulse slippage on resonant third harmonic generation of a short pulse laser in electron-hole plasma in the presence of wiggler magnetic field has been investigated.The group velocity mismatch of the third harmonic pulse and the fundamental pulse is significant in electron hole plasma.As the third harmonic pulse has higher group velocity than that of fundamental pulse,therefore,it moves faster than the fundamental pulse.It gets slipped out of the domain of fundamental pulse and its amplitude saturates.Phase matching condition is satisfied by applying wiggler magnetic field,which provides additional angular momentum to the third harmonic photon to make the process resonant.Enhancement in the efficiency of third harmonic generation of an intense short pulse laser in electron-hole plasma embedded with a magnetic wiggler is seen.展开更多
The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects,...The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects,quantum statistical pressures of the plasma species, as well as exchange and correlation effects. The dispersion characteristics of surface electrostatic oscillations are investigated by using the typical values of Ga As, Ga Sb and Ga N semiconductors. Numerical results show the existence of one low-frequency branch due to the mass difference between the electrons and holes in addition to one high-frequency branch due to charge-separation effects.展开更多
On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic fi...On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11574367the National Basic Research Program of China under Grant Nos 2013CB921904 and 2015CB921300+2 种基金the National Key Research and Development Program of China under Grant No 2016YFA0300600the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020300the US Department of Energy under Grant No DE-SC0014208
文摘WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concen- tration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range,and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identify a fiat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a fiat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
基金supported by the Croucher Foundation(Croucher Innovation Award)the Research Grants Council(HKU17305914P,C7036-17W)
文摘We investigate two-photon transitions to the electron-hole scattering continuum in monolayer transition-metal dichalcogenides, and identify two contributions to this nonlinear optical process with opposite circularly polarized valley selection rules. In the non-interacting limit, the competition between the two contributions leads to a crossover of the selection rule with the increase of the two-photon energy. With the strong Coulomb interaction between the electron and hole, the two contributions excite electron-hole scattering states in orthogonal angular momentum channels, while the strength of the transition can be substantially enhanced by the interaction. Based on this picture of the two-photon transition, the second harmonic generation(SHG) in the electron-hole continuum is analyzed, where the Coulomb interaction is shown to greatly alter the relative strength of different cross-circular polarized SHG processes. Valley current injection by the quantum interference of one-photon and two-photon transition is also investigated in the presence of the strong Coulomb interaction, which significantly enhances the injection rate.
文摘The electron-hole exchange interaction significantly influences the optical properties of excitons and radiative decay. However, exciton dynamics in luminescent carbon dots (Cdots) is still not clear. In this study, we have developed a simple and efficient one-step strategy to synthesize luminescent Cdots using the pyrolysis of oleylamine. The sp^2 clusters of a few aromatic rings are responsible for the observed blue photoluminescence. The size of these clusters can be tuned by controlling the reaction time, and the energy gap between the π-π* states of the sp^2 domains decreases as the sp^2 cluster size increases. More importantly, the strong electron-hole exchange interaction results in the splitting of the exciton states of the sp^2 clusters into the singlet-bright and triplet-dark states with an energy difference ΔE, which decreases with increasing sp^2 cluster size owing to the reduction of the confinement energy and the suppression of the electron-hole exchange interaction.
基金Supported by a financial grant from CSIR,New Delhi,India,under Project No.03(1438)/18/EMR-II
文摘Effect of pulse slippage on resonant third harmonic generation of a short pulse laser in electron-hole plasma in the presence of wiggler magnetic field has been investigated.The group velocity mismatch of the third harmonic pulse and the fundamental pulse is significant in electron hole plasma.As the third harmonic pulse has higher group velocity than that of fundamental pulse,therefore,it moves faster than the fundamental pulse.It gets slipped out of the domain of fundamental pulse and its amplitude saturates.Phase matching condition is satisfied by applying wiggler magnetic field,which provides additional angular momentum to the third harmonic photon to make the process resonant.Enhancement in the efficiency of third harmonic generation of an intense short pulse laser in electron-hole plasma embedded with a magnetic wiggler is seen.
文摘The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects,quantum statistical pressures of the plasma species, as well as exchange and correlation effects. The dispersion characteristics of surface electrostatic oscillations are investigated by using the typical values of Ga As, Ga Sb and Ga N semiconductors. Numerical results show the existence of one low-frequency branch due to the mass difference between the electrons and holes in addition to one high-frequency branch due to charge-separation effects.
文摘On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.