Monacrosporium ellipsosporum, a nematode-trapping fungus, was isolated by baiting with sclerotiaof Sclerotinia sclerotiorum in soil from a tobacco field in Yuxi, Yunnan Province. Colonizationfrequency of the scleroti...Monacrosporium ellipsosporum, a nematode-trapping fungus, was isolated by baiting with sclerotiaof Sclerotinia sclerotiorum in soil from a tobacco field in Yuxi, Yunnan Province. Colonizationfrequency of the sclerotia by the fungus was 18% in natural soil. Reinoculation tests byplacing surface-sterilized sclerotia on fungal cultures for two weeks and then surface-sterilized again led to 32% sclerotia be infected. Dual culture tests in PDA plates did notgive rise to a suppression zone between the colonies of M. ellipsosporum and its counterpartfungi S. sclerotiorum and Rhizoctonia solani, suggesting there was little or no nutritionalcompetition and absent of antifungal compounds. However, M. ellipsosporum could grow overabsent of S. sclerotiorum and R. solani, and significantly inhibited their growth on agarplates. Scanning electron and light microscopic observations showed that hyphae of M. ellipsosporumgrew along and appressed on hypha of S. sclerotiorum and coiled around hyphae of R. solani.Assays of cell wall-degrading enzymes showed that M. ellipsosporum grew well in chitin agarmedia, with clear transparent hydrolysis zones. Activities of total chitinase, exo-chitinase,β-1, 3-glucanase and protease were 140.2±11.9, 82.9±4.1, 111.2±7.6 and 76.1±4.3 U respect-ively, after incubation for 4 days at 30 ℃ in liquid media containing ground sclerotia of S.sclerotiorum as sole nutrient source. These enzymes might be important in the mycoparasiticactivity of M. ellipsosporum.展开更多
基金supported by the National High-Tech R&D Proqram(863)of China(2001AA246011).
文摘Monacrosporium ellipsosporum, a nematode-trapping fungus, was isolated by baiting with sclerotiaof Sclerotinia sclerotiorum in soil from a tobacco field in Yuxi, Yunnan Province. Colonizationfrequency of the sclerotia by the fungus was 18% in natural soil. Reinoculation tests byplacing surface-sterilized sclerotia on fungal cultures for two weeks and then surface-sterilized again led to 32% sclerotia be infected. Dual culture tests in PDA plates did notgive rise to a suppression zone between the colonies of M. ellipsosporum and its counterpartfungi S. sclerotiorum and Rhizoctonia solani, suggesting there was little or no nutritionalcompetition and absent of antifungal compounds. However, M. ellipsosporum could grow overabsent of S. sclerotiorum and R. solani, and significantly inhibited their growth on agarplates. Scanning electron and light microscopic observations showed that hyphae of M. ellipsosporumgrew along and appressed on hypha of S. sclerotiorum and coiled around hyphae of R. solani.Assays of cell wall-degrading enzymes showed that M. ellipsosporum grew well in chitin agarmedia, with clear transparent hydrolysis zones. Activities of total chitinase, exo-chitinase,β-1, 3-glucanase and protease were 140.2±11.9, 82.9±4.1, 111.2±7.6 and 76.1±4.3 U respect-ively, after incubation for 4 days at 30 ℃ in liquid media containing ground sclerotia of S.sclerotiorum as sole nutrient source. These enzymes might be important in the mycoparasiticactivity of M. ellipsosporum.