期刊文献+
共找到5,538篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
1
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer Numerical model Moving load embankment DEFORMATION Stress
下载PDF
Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-v-SVR method
2
作者 Qi Zhang Qian Su +2 位作者 Zongyu Zhang Zhixing Deng De Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期317-332,共16页
Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wol... Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively. 展开更多
关键词 High embankment Settlement prediction Joint denoising technique Enhanced gray wolf optimizer Support vector regression
下载PDF
Performance analyses of two-phase closed thermosyphons for road embankments in the high-latitude permafrost regions
3
作者 WANG Guan-fu LIN Chuang +3 位作者 ZHU Long FENG De-cheng XIN Yang-yang ZHANG Feng 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3138-3153,共16页
Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extrem... Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extremely cold region of the Da Xing'anling Mountains.In this study,a series of three-dimensional finite element TPCT embankment models were established based on the ZhanglingMohe highway TPCT test section in Da Xing'anling Mountains,and the thermal characteristics and the cooling effect of the TPCTs were analyzed.The results indicated that the TPCTs installed in the northeastern high-latitude regions is effective in cooling and stabilizing the embankment.The working cycle of the TPCTs is nearly 7 months,and the cooling range of the TPCTs can reach 3 m in this region.However,due to the extremely low temperature,the TPCT generates a large radial gradient in the permafrost layer.Meanwhile,by changing the climate conditions,the same type of TPCT embankment located in the Da Xing'anling Mountains,the Xiao Xing'anling Mountains,and the Qinghai-Tibet Plateau permafrost regions were simulated.Based on the comparison of the climate differences between the Qinghai-Tibet Plateau and Northeast China,the differences in the effectiveness of TPCTs were studied.Finally,the limitations of using existing TPCTs in high-latitude permafrost regions of China were discussed and the potential improvements of the TPCT in cold regions were presented. 展开更多
关键词 PERMAFROST Highway embankment Two-phase closed thermosyphon Numerical simulation Climatic condition Cooling performance
原文传递
Dynamic soil arching in piled embankment under train load of high-speed railways
4
作者 Niu Tingting Yang Yule +2 位作者 Ma Qianli Zou Jiuqun Lin Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期719-730,共12页
Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still... Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases. 展开更多
关键词 dynamic soil arching membrane effect piled embankment train load model test
下载PDF
Investigating the performance of passageway corridor for ground reinforced embankments against rockfall
5
作者 Muhammet Çelik 《Journal of Mountain Science》 SCIE CSCD 2023年第1期15-30,共16页
Rockfall disasters can result in damages to various structures such as highways and buildings.Ground reinforced embankments(GRE) are one of the barrier types used to prevent rockfall. GRE absorb the impact energy of t... Rockfall disasters can result in damages to various structures such as highways and buildings.Ground reinforced embankments(GRE) are one of the barrier types used to prevent rockfall. GRE absorb the impact energy of the hitting rock blocks by the movement of fine soil particles triggered by the penetration of the rock in the soil. In this process,stresses in the wall are distributed in both the transverse and longitudinal directions. GREs on the valley slopes can be hundreds of meters long, so such structures cause difficulty in transition to valley slope behind the embankments. Especially, access to areas such as agricultural, pasture or forest lands behind the GRE becomes a challenge. The current paper presents the design of passageways in GRE using the finite element method to provide safe corridors at several different parts within the hundreds of meters long structures. A total of 4 different passageway designs for GRE were developed. Each finite element model was subjected to rockfall with different kinetic energies of 500, 1000 and 3000kJ. The obtained results showed that 44% increase in structure volume increased the impact capacity from 500 kJ to 3000kJ.Furthermore, the critical displacement caused by rockfall impact with an energy of 3000 kJ was reduced by 31%. It was determined that the support applied with the reinforced concrete wall did not reach the desired energy absorption value due to its rigid structure, and even collapsed at 3000 kJ. 展开更多
关键词 DISASTER ROCKFALL Ground reinforced embankments Finite elements TRANSPORTATION
原文传递
Earthquake response of wrap faced embankment on soft clay soil in Bangladesh
6
作者 Ripon Hore Sudipta Chakraborty +2 位作者 Kamruzzaman Kamrul Ayaz Mahmud Shuvon Mehedi AAnsary 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期703-718,共16页
A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.... A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.The amplification of acceleration,displacement,pore water pressure,and strain response were measured while varying input accelerations and surcharge pressures.Time histories of the Kobe record of the 1995 Hanshin earthquake were used as the input seismic motion.The input acceleration was 0.05 g,0.1 g,0.15 g,and 0.2 g,and different surcharge pressures were 0.70 kPa,1.12 kPa,and 1.72 kPa with relative density of Sylhet sand fixed to 48%.The output data from the shaking table tests and the numerical analysis performed through the PLAXIS 3D software were compared,and these findings were also compared with some earlier similar studies.The acceleration amplification,displacement,pore water pressure,and strain(%)changed along the elevation of the embankment and acceleration response increased with the increase in base acceleration.The increase was more noticeable at higher elevations.These findings enrich the knowledge of predicting the dynamic behavior of wrap-faced embankments and enable the design parameters to be adjusted more accurately. 展开更多
关键词 shaking table test soft clayey soil kobe earthquake seismic wave wrap-faced soil embankment
下载PDF
Reliability assessment for serviceability limit states of stiffened deep cement mixing column-supported embankments
7
作者 Chana Phutthananon Pornkasem Jongpradist +3 位作者 Kangwan Kandavorawong Daniel Dias Xiangfeng Guo Pitthaya Jamsawang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2402-2422,共21页
The reliability and deterministic analyses of wood-cored stiffened deep cement mixing and deep cement mixing column-supported embankments(referred to as WSCSE and DCSE,respectively)considering serviceability limit sta... The reliability and deterministic analyses of wood-cored stiffened deep cement mixing and deep cement mixing column-supported embankments(referred to as WSCSE and DCSE,respectively)considering serviceability limit state requirements are presented in this paper.Random field theory was used to simulate the spatial variability of soilcement mixing(SCM)material in which the adaptive Kriging Monte Carlo simulation was adopted to estimate the failure probability of a columnsupported embankment(CSE)system.A new method for stochastically generating random values of unconfined compressive strength(qu)and the ratio(Ru)between the undrained elastic modulus and qu of SCM material based on statistical correlation data is proposed.Reliability performance of CSEs concerning changes in the mean(μ),coefficient of variation(CoV),and vertical spatial correlation length(θv)of qu and Ru are presented and discussed.The obtained results indicate that WSCSE can provide a significantly higher reliability level and can tolerate more SCM material spatial variability than DCSE.Some performance of DCSE and WSCSE,which can be considered satisfactory in a deterministic framework,cannot guarantee an acceptable reliability level from a probabilistic viewpoint.This highlights the importance and necessity of employing reliability analyses for the design of CSEs.Moreover,consideration of only μ and CoV of qu seems to be sufficient for reliability analysis of WSCSE while for DCSE,uncertainties regarding the Ru(i.e.both μ and CoV)and θv of qu cannot be ignored. 展开更多
关键词 Reliability analysis Column-supported embankment(CSE) Stiffened deep cement mixing column SERVICEABILITY Adaptive kriging Monte Carlo simulation
下载PDF
Seepage influence of supra-permafrost groundwater on thermal field of embankment on Qinghai-Tibet Plateau,China
8
作者 MingTang Chai Yuan Luo +2 位作者 Yu Gao Wei Ma YanHu Mu 《Research in Cold and Arid Regions》 CSCD 2023年第3期132-140,共9页
As a unique hydro-geological phenomenon in permafrost regions,the seepage of supra-permafrost groundwater will carry a large amount of heat and cause differential settlement in the embankment.This paper presents the r... As a unique hydro-geological phenomenon in permafrost regions,the seepage of supra-permafrost groundwater will carry a large amount of heat and cause differential settlement in the embankment.This paper presents the results of a field study monitoring the supra-permafrost groundwater levels on both sides of an embankment in permafrost regions.It describes a two-dimensional coupled hydro-thermal model and uses it to analyze the influence of seepage on its temperature field considering climate warming.The results show that seepage exacerbates permafrost thawing and thickens the active layer.The thermal influence on the sunny side of the embankment toe is more significant than that on the shady side,which will cause differential settlement in the embankment.After 50 years of operation,the embankment soil temperature with seepage during freezing is 0.2C warmer than that without seepage,and the thermal influence diminished with the increase in depth.Additionally,seepage influences the thermal regime in vertical and horizontal directions of the embankment.During freezing seasons,the thaw depth increases,and the horizontal thaw range decreases.During thawing seasons,the thaw range grows both vertically and horizontally. 展开更多
关键词 PERMAFROST embankment Hydro-thermal coupling Thawed inter-layer
下载PDF
Finite Element Modeling of Geotextile Reinforced Embankments on Soft Clay
9
作者 Diaa W. El Hourani Ify L. Nwaogazie Godfrey Waribo TomJaja 《Open Journal of Civil Engineering》 CAS 2023年第1期48-57,共10页
The use of geotextiles as a reinforcement material for improving the factor of safety against slope failure in embankments built on soft clay is becoming a common practice. This work is intended to help understand the... The use of geotextiles as a reinforcement material for improving the factor of safety against slope failure in embankments built on soft clay is becoming a common practice. This work is intended to help understand the effect of the geotextile reinforcement has on such embankments and to provide a design aid for civil engineers that enables them to quickly estimate the factor of safety against slope failure. Seventy four different cases were modelled and analyzed using a finite element software, GeoStudio 2018 R2. The results showed that the optimum improvement was achieved when using a single layer of geotextile reinforcement placed at the base of the embankment, by which the factor of safety increased by up to 40%. Adding a second layer, a third layer and a fourth layer, increases the safety factor by 2.5%, 1% and 0.5% respectively. Different charts for different heights of embankments were presented to aid in finding the most suitable slope angle and number of reinforcement layers required to achieve a certain safety factor. 展开更多
关键词 Reinforced Soil embankmentS Soft Soils Slope Stability
下载PDF
Settlement Control Technology of High Filled Soil-Rock Embankment in Alpine and High-Altitude Areas
10
作者 Guangxi Wu 《Journal of World Architecture》 2023年第4期75-81,共7页
China's infrastructure has gradually achieved large-scale development,and transportation construction has also shifted from east to west,transitioning from plains to mountainous areas.High-fill embankments of diff... China's infrastructure has gradually achieved large-scale development,and transportation construction has also shifted from east to west,transitioning from plains to mountainous areas.High-fill embankments of different sizes in mountainous areas are unavoidable,and the settlement of high-fill embankments is usually the most concerned issue in high-fill projects.According to the current research of highway projects,most of the high embankments in mountainous areas are soil-rock mixed embankments or rock-filled embankments,and their post-construction settlements are directly related to construction technology and the type of filler used.In this paper,the problems in the settlement control of earth-filled embankment and related factors are analyzed in detail.The settlement control technology of high-fill embankment in high-cold and high-altitude areas is also discussed,so as to ensure the overall quality of high-fill embankment. 展开更多
关键词 High-altitude and cold areas High soil-rock embankment Settlement control technology
下载PDF
Porosity of crushed rock layer and its impact on thermal regime of Qinghai-Tibet Railway embankment 被引量:5
11
作者 刘明浩 李国玉 +2 位作者 牛富俊 林战举 商允虎 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期977-987,共11页
It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong w... It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong winds, cold and high radiation conditions on the Qinghai-Tibet Plateau(QTP), both wind-blown sand and/or weathered rock debris blockage might reduce the porosity of the rock layers, resulting in weakening the cooling effect of the crushed rock layer(CRL) in the crushed rock embankment(CRE) of the Qinghai-Tibet Railway(QTR) in the permafrost regions. Such a process might warm the underlying permafrost, and further lead to potential threat to the QTR's integrity and stability. The different porosities corresponding to the different equivalent rock diameters were measured in the laboratory using water saturation method, and an empirical exponential equation between porosity and equivalent rock diameter was proposed based on the measured experimental data and an important finding is observed in our and other experiments that the larger size crushed rock tends to lead to the larger porosity when arbitrarily packing. Numerical tests were carried out to study impacts of porosity on permafrost degradation and differential thaw depths between the sunny and shady shoulders. The results show that the decrease in porosity due to wind-blown sand or weathered rock debris clogging can worsen the permafrost degradation and lead to the asymmetric thermal regime. In the traditional embankment(without the CRL within it), the largest differential thaw depth can reach up to 3.1 m. The optimized porosity appears in a range from 34% to 42% corresponding to equivalent rock diameter from 10 to 20.5 cm. The CRE with the optimized porosities can make underlying permafrost stable and 0 ℃ isotherms symmetric in the coming 50 years, even under the condition that the climate warming can lead to permafrost degradation under the CRE and the traditional embankment. Some practical implications were proposed to benefit the future design, construction and maintenance of CRE in permafrost regions. 展开更多
关键词 Qinghai-Tibet Railway crushed rock embankment POROSITY wind-blown sand permafrost degradation
下载PDF
Probabilistic stability analysis of embankment slopes considering the spatial variability of soil properties and seismic randomness 被引量:4
12
作者 ZHANG Wen-gang WU Jia-hao +2 位作者 GU Xin HAN Liang WANG Lin 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1464-1474,共11页
The safety of embankments under seismic conditions is a primary concern for geotechnical engineering societies.The reliability analysis approach offers an effective tool to quantify the safety margin of geotechnical s... The safety of embankments under seismic conditions is a primary concern for geotechnical engineering societies.The reliability analysis approach offers an effective tool to quantify the safety margin of geotechnical structures from a probabilistic perspective and has gained increasing popularity in geotechnical engineering.This study presents an approach for probabilistic stability analysis of embankment slopes under transient seepage considering both the spatial variability of soil parameters and seismic randomness.The spatial varying soil parameters are firstly characterized by the random field theory,where a large number of random field samples of the soil parameters can be readily generated.Then,the factor of safety(FS)of the embankment slope under seismic conditions corresponding to each random field sample is evaluated through performing seismic stability analysis based on the pseudo-static method.A hypothetical embankment example is adopted in this study for illustration,and the influences of shear strength parameters,seismic coefficient,and the external water level on the embankment slope failure probability are systematically investigated.Results show that the coefficient of variation of the friction angle and the horizontal scale of fluctuation have more significant effects on the embankment slope failure probability.Besides,the seismic coefficient also affects the embankment slope failure probability considerably.For a given external water level,the failure probability corresponding to the downstream slope of the embankment is larger than that in the upstream slope. 展开更多
关键词 embankment Reliability analysis Spatial variability Seismic condition Pseudo-static method
原文传递
Dynamic responses of bridge-approach embankment transition section of high-speed rail 被引量:2
13
作者 杨长卫 孙海玲 +2 位作者 张建经 朱传彬 颜利平 《Journal of Central South University》 SCIE EI CAS 2013年第10期2830-2839,共10页
Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the... Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones. 展开更多
关键词 high-speed RAIL bridge-approach embankment section numerical model TRACK DEFLECTION angle
下载PDF
Characteristics of thawed interlayer and its effect on embankment settlement along the Qinghai-Tibet Railway in permafrost regions 被引量:2
14
作者 SUN Zhi-zhong MA Wei +3 位作者 ZHANG Shu-juan MU Yan-hu YUN Han-bo WANG Hong-lei 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1090-1100,共11页
The formation of thawed interlayer beneath embankment can result in embankment settlement in permafrost regions. Based on the data on ground temperatures and deformations beneath the embankment, observed in-situ along... The formation of thawed interlayer beneath embankment can result in embankment settlement in permafrost regions. Based on the data on ground temperatures and deformations beneath the embankment, observed in-situ along the QinghaiTibet Railway in permafrost regions from 2006 to2013, characteristics of the thawed interlayer beneath the embankment and its influence on the embankment settlement are studied. The results indicate that the thawed interlayer hardly forms beneath the natural field, and beneath the embankments from the Qinghai-Tibet Railway the thawed interlayer develops widely, and it can be refrozen totally in the regions with lower mean annual ground temperature, and developed further in the regions with higher mean annual ground temperature.The thawed interlayer is closely related to the embankment settlement. The ice content of permafrost underlying the thawed interlayer influences the settlement of embankment. The higher the ice content is, the larger the settlement is, and vice versa. The increase in thickness of thawed interlayer mainly results from the decline of artificial permafrost table in high-temperature permafrost regions. 展开更多
关键词 IN-SITU monitoring Qinghai-TibetRailway embankment SETTLEMENT Thawed INTERLAYER
原文传递
Fuzzy Probabilistic Analysis of Seismic Stability of Coastal Embankment 被引量:1
15
作者 He Guangne Yang Bin Wen Nai Professor, Dalian University of Technology, Dalian 116023 Engineer, Design and Research Institute of Shanghai Harbour Engineering, Shanghai 200032 . Lecturer, Dalian Fisheries College, Dalian 116023 《China Ocean Engineering》 SCIE EI 1996年第1期99-105,共7页
The stability of slope is affected by a number of factors, some of which have not only random property but also fuzzy characteristic. Therefore, the analysis of slope stability is really an uncertain problem. The cust... The stability of slope is affected by a number of factors, some of which have not only random property but also fuzzy characteristic. Therefore, the analysis of slope stability is really an uncertain problem. The customary safety factor does not in reality reflect stability scientifically, quantitatively and practically. In order to obtain more practical results, the slope stability is treated as a fuzzy random event for the evaluation of its fuzzy probability. Finally, the seismic stability of an existing coastal embankment is analyzed by means of the suggested fuzzy probabilistic method. It may be seen that the results of analysis can more fully represent the numerical assessment of the degree of slope seismic stability. 展开更多
关键词 COASTAL embankment SEISMIC STABILITY FUZZY PROBABILISTIC analysis
下载PDF
Probabilistic Analysis for Seismic Stability of Beach Earth Embankment 被引量:1
16
作者 He Guangne Yang Bin Professor, Dalian University of Technology, Dalian 116024 Engineer, Design and Research Institute of Shanghai Harbour Engineering, Shanghai 200032 《China Ocean Engineering》 SCIE EI 1995年第4期445-453,共9页
The current safety factor method for evaluating earth embankment stability is not very rational since the assessment of slope stability is really an uncertainty problem. In order to consider the random property of thi... The current safety factor method for evaluating earth embankment stability is not very rational since the assessment of slope stability is really an uncertainty problem. In order to consider the random property of this problem, the probabilistic analysis is introduced herein. Finally, the stability of a real beach earth embankment is analysed by means of the suggested probabilitic approach. It may be seen that the results of analysis can represent the numerical assessment of the degree of seismic stability. 展开更多
关键词 BEACH EARTH embankment SEISMIC STABILITY PROBABILISTIC analysis
下载PDF
A simplified method for prediction of embankment settlement in clays 被引量:1
17
作者 Chunlin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第1期61-66,共6页
The prediction of embankment settlement is a critically important issue for the serviceability of subgrade projects,especially the post-construction settlement.A number of methods have been proposed to predict embankm... The prediction of embankment settlement is a critically important issue for the serviceability of subgrade projects,especially the post-construction settlement.A number of methods have been proposed to predict embankment settlement;however,all of these methods are based on a parameter,i.e.the initial time point.The difference of the initial time point determined by different designers can de?nitely induce errors in prediction of embankment settlement.This paper proposed a concept named"potential settlement"and a simpli?ed method based on the in situ data.The key parameter"b"in the proposed method was veri?ed using theoretical method and?eld data.Finally,an example was used to demonstrate the advantages of the proposed method by comparing with other methods and the observation data. 展开更多
关键词 Simplified method SETTLEMENT PREDICTION embankment CONSOLIDATION THEORY Clayey SOIL
下载PDF
Analysis of the Cooling Mechanism of a Crushed Rock Embankment in Warm and Lower Temperature Permafrost Regions along the Qinghai-Tibet Railway 被引量:2
18
作者 Wei Ma Qingbai Wu +1 位作者 Yongzhi Liu Hui Bing 《Research in Cold and Arid Regions》 2008年第1期14-25,共12页
Based on data monitored in situ and theoretical analysis,the characteristics of the temperature field and mechanism of thermal conduction of a crushed rock embankment were studied along the Qinghai-Tibet Railway.The r... Based on data monitored in situ and theoretical analysis,the characteristics of the temperature field and mechanism of thermal conduction of a crushed rock embankment were studied along the Qinghai-Tibet Railway.The results of experi-ments in the field revealed that the cooling effect of a crushed rock embankment is influenced mainly by the natural con-vection in winter and shield effect in summer,the ventilation of crushed rocks,and the ground temperature regime be-neath the embankment.Consequently,these three factors should be taken into account in numerical simulations,but it is as a result of natural convection only. 展开更多
关键词 Qinghai-Tibet Railway permafrost region crushed rock embankment cooling mechanism
下载PDF
Study on the adaptability of block-rock embankment in permafrost regions 被引量:1
19
作者 YuChi Liu ZhiGang Song 《Research in Cold and Arid Regions》 CSCD 2017年第4期412-419,共8页
As an effective solution for protecting the underlying permafrost and preventing roadway damages, the block-rock embankment(BRE) has been widely used on the Qinghai–Tibet Railway, Qinghai–Tibet Highway, and Ching–H... As an effective solution for protecting the underlying permafrost and preventing roadway damages, the block-rock embankment(BRE) has been widely used on the Qinghai–Tibet Railway, Qinghai–Tibet Highway, and Ching–Hong Road;and it will be promoted for other roadways in the future. To evaluate the adaptability of BRE, the catastrophe-progression method was adopted for the evaluation. By analyzing the factors affecting the stability of BRE and utilizing engineering experience, we were able to establish the mathematical model and divide the adaptability of BRE into five grades. After the verifying analysis of 28 practical engineering examples, the evaluation results are broadly in line with practical application effects. Therefore, the adaptability of BRE can be evaluated and predicted more accurately with this evaluation model. 展开更多
关键词 PERMAFROST regions block-rock embankment ADAPTABILITY catastrophe-progression method evaluation index system
下载PDF
Analysis of the stability and seismic behavior of the geosynthetic-reinforced embankments under earthquake 被引量:1
20
作者 ZHU Hong-wei YAO Ling-kan XU Guang-xing 《Journal of Mountain Science》 SCIE CSCD 2020年第5期1269-1280,共12页
The stability and seismic behavior of geosynthetic-reinforced embankments during the earthquake is not well known.In this paper,the damage types of embankments were summarized,and the seismic stability of reinforced e... The stability and seismic behavior of geosynthetic-reinforced embankments during the earthquake is not well known.In this paper,the damage types of embankments were summarized,and the seismic stability of reinforced embankment were analyzed through an earthquake damage investigation in the Wenchuan earthquake region.Then,large-scale shaking table model tests were performed on the geosynthetic-reinforced embankment.The results show that the damage level of the reinforced embankment was almost less than that of the unreinforced embankment.The peak seismic earth pressure was nonlinear along the height of the embankment,the largest peak seismic earth pressure was roughly in the middle of the embankment slope.The peak ground accelerations(PGA)amplification factor first showed an increasing pattern and then a decreasing pattern with the increase of elevation,but there was a final increasing trend along the height of the reinforced embankment.The results can help to establish the proper design of the reinforcement embankments under earthquake conditions. 展开更多
关键词 Reinforced embankment STABILITY Seismic behavior Shaking table model test
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部