Immobilization of the atom transfer radical polymerization (ATRP) macroinitiators at the silica nanoparticle surfaces was achieved through surface modification with excess toluene-2,4-diisocynate (TDI), after which th...Immobilization of the atom transfer radical polymerization (ATRP) macroinitiators at the silica nanoparticle surfaces was achieved through surface modification with excess toluene-2,4-diisocynate (TDI), after which the residual isocyanate groups were converted into ATRP macroinitiators. Structurally well-defined polystyrene chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polystyrene by ATRP, which was initiated by the as-synthesized silica-based macroinitiator. FTIR, NMR and gel permeation chro-matography (GPC) were used to characterize the polystyrene/silica hybrid particles.展开更多
Polymethyl methacrylate (PMMA) encapsulated silica nanocomposite particles were prepared by ultra- sonically induced in situ polymerization of methyl methacrylate (MMA) on the surface of silica sol. The nanopartic...Polymethyl methacrylate (PMMA) encapsulated silica nanocomposite particles were prepared by ultra- sonically induced in situ polymerization of methyl methacrylate (MMA) on the surface of silica sol. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FFIR), transmission electron microscopy (TEM), thermogravimetry (TG), scanning electron microscopy (SEM). The results showed that core-shell structure nanocomposite particles with an average size of 36 nm were obtained, and the thickness of polymer encapsulating layer was about 8 nm. The pretreatment of silica sol with tert-butyl hydroperoxide (TBHP) and the addition of ^-methacryloxypropyl trimethoxysilane (MAPTS) significantly enhanced the encapsulation effect. Modified by the polymer layer, the silica particles could be well dispersed in matrices and utilized to improve the mechanical performance of polyacrylates.展开更多
基金Supported by Hunan Provincial Natural Science Foundation of China (Grant No. 06JJ20036)
文摘Immobilization of the atom transfer radical polymerization (ATRP) macroinitiators at the silica nanoparticle surfaces was achieved through surface modification with excess toluene-2,4-diisocynate (TDI), after which the residual isocyanate groups were converted into ATRP macroinitiators. Structurally well-defined polystyrene chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polystyrene by ATRP, which was initiated by the as-synthesized silica-based macroinitiator. FTIR, NMR and gel permeation chro-matography (GPC) were used to characterize the polystyrene/silica hybrid particles.
文摘Polymethyl methacrylate (PMMA) encapsulated silica nanocomposite particles were prepared by ultra- sonically induced in situ polymerization of methyl methacrylate (MMA) on the surface of silica sol. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FFIR), transmission electron microscopy (TEM), thermogravimetry (TG), scanning electron microscopy (SEM). The results showed that core-shell structure nanocomposite particles with an average size of 36 nm were obtained, and the thickness of polymer encapsulating layer was about 8 nm. The pretreatment of silica sol with tert-butyl hydroperoxide (TBHP) and the addition of ^-methacryloxypropyl trimethoxysilane (MAPTS) significantly enhanced the encapsulation effect. Modified by the polymer layer, the silica particles could be well dispersed in matrices and utilized to improve the mechanical performance of polyacrylates.