The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosedtype holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epit...The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosedtype holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epitaxial method.The results demonstrate that there are three main regions by varying the spatial position of the seed.Due to the plasma concentration occurring at the seed edge,a larger depth is beneficial to transfer the plasma to the holder surface and suppress the polycrystalline diamond rim around the seed edge.However,the plasma density at the edge decreases drastically when the depth is too large,resulting in the growth of a vicinal grain plane and the reduction of surface area.By adopting an appropriate spatial location,the size of single-crystal diamond can be increased from 7 mm×7 mm×0.35 mm to8.6 mm×8.6 mm×2.8 mm without the polycrystalline diamond rim.展开更多
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101690001)。
文摘The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosedtype holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epitaxial method.The results demonstrate that there are three main regions by varying the spatial position of the seed.Due to the plasma concentration occurring at the seed edge,a larger depth is beneficial to transfer the plasma to the holder surface and suppress the polycrystalline diamond rim around the seed edge.However,the plasma density at the edge decreases drastically when the depth is too large,resulting in the growth of a vicinal grain plane and the reduction of surface area.By adopting an appropriate spatial location,the size of single-crystal diamond can be increased from 7 mm×7 mm×0.35 mm to8.6 mm×8.6 mm×2.8 mm without the polycrystalline diamond rim.