期刊文献+
共找到4,367篇文章
< 1 2 219 >
每页显示 20 50 100
Exploring innovative synthetic solutions for advanced polymer-based electrochromic energy storage devices:Phenoxazine as a promising chromophore
1
作者 Catalin-Paul Constantin Mihaela Balan-Porcarasu Gabriela Lisa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期433-452,共20页
The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazo... The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s. 展开更多
关键词 POLYMERS PHENOXAZINE Electrochromic energy storage Electrochromi cenergy storage devices
下载PDF
Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices 被引量:5
2
作者 Amjid Rafique Isabel Ferreira +1 位作者 Ghulam Abbas Ana Catarina Baptista 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期190-247,共58页
Flexible microelectronic devices have seen an increasing trend toward development of miniaturized,portable,and integrated devices as wearable electronics which have the requirement for being light weight,small in dime... Flexible microelectronic devices have seen an increasing trend toward development of miniaturized,portable,and integrated devices as wearable electronics which have the requirement for being light weight,small in dimension,and suppleness.Traditional three-dimensional(3D)and two-dimensional(2D)electronics gadgets fail to effectively comply with these necessities owing to their stiffness and large weights.Investigations have come up with a new family of one-dimensional(1D)flexible and fiber-based electronic devices(FBEDs)comprising power storage,energy-scavenging,implantable sensing,and flexible displays gadgets.However,development and manufacturing are still a challenge owing to their small radius,flexibility,low weight,weave ability and integration in textile electronics.This paper will provide a detailed review on the importance of substrates in electronic devices,intrinsic property requirements,fabrication classification and applications in energy harvesting,energy storage and other flexible electronic devices.Fiber-and textile-based electronic devices for bulk/scalable fabrications,encapsulation,and testing are reviewed and presented future research ideas to enhance the commercialization of these fiber-based electronics devices. 展开更多
关键词 Flexible electronics Electronic textiles energy harvesting SUPERCAPACITORS Photovoltaic devices
下载PDF
A research on the effect of plasma spectrum collection device on LIBS spectral intensity
3
作者 林晓梅 董艳杰 +5 位作者 林京君 黄玉涛 杨江飞 岳星宇 张倬嘉 段鑫杨 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期121-128,共8页
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu... Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil. 展开更多
关键词 LIBS plasma spectrum collection device spectral enhancement plasma temperature limit of detection
下载PDF
Bifunctional flexible electrochromic energy storage devices based on silver nanowire flexible transparent electrodes 被引量:2
4
作者 He Zhang Fangyuan Sun +8 位作者 Ge Cao Dongyan Zhou Guofan Zhang Jiayun Feng Shang Wang Fengyu Su Yanqing Tian Yan Jun Liu Yanhong Tian 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期307-316,共10页
Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(... Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(FTEs)materials for the emerging flexible devices.Currently,fabricating FECESD based on AgNWs FTEs is still hindered by their intrinsic poor electrochemical stability.To address this issue,a hybrid AgNWs/Co(OH)_(2)/PEDOT:PSS electrode is proposed.The PEDOT:PSS could not only improve the resistance against electrochemical corrosion of AgNWs,but also work as functional layer to realize the color-changing and energy storage properties.Moreover,the Co(OH)_(2)interlayer further improved the color-changing and energy storage performance.Based on the improvement,we assembled the symmetrical FECESDs.Under the same condition,the areal capacitance(0.8 mF cm^(−2))and coloration efficiency(269.80 cm^(2)C−1)of AgNWs/Co(OH)_(2)/PEDOT:PSS FECESDs were obviously higher than AgNWs/PEDOT:PSS FECESDs.Furthermore,the obtained FECESDs exhibited excellent stability against the mechanical deformation.The areal capacitance remained stable during 1000 times cyclic bending with a 25 mm curvature radius.These results demonstrated the broad application potential of the AgNWs/Co(OH)_(2)/PEDOT:PSS FECESD for the emerging portable and multifunctional electronics. 展开更多
关键词 electrochromic device energy storage device silver nanowires flexible transparent electrode
下载PDF
Geothermo-mechanical alterations due to heat energy extraction in enhanced geothermal systems: Overview and prospective directions
5
作者 Mary C.Ngoma Oladoyin Kolawole Olufemi Olorode 《Deep Underground Science and Engineering》 2024年第3期256-268,共13页
Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and m... Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and meet the 2050 net‐zero carbon emission target.Geothermal resources in low‐permeability and medium‐and high‐temperature reservoirs in sedimentary sequence require hydraulic stimulation for enhanced geothermal systems (EGS).However,fluid migration for geothermal energy in EGS or with potential CO_(2) storage in a CO_(2)‐EGS are both dependent on the in situ flow pathway network created by induced fluid injection.These thermo‐mechanical interactions can be complex and induce varying alterations in the mechanical response when the working fluid is water (in EGS) or supercritical CO_(2)(in CO_(2)‐EGS),which could impact the geothermal energy recovery from geological formations.Therefore,there is a need for a deeper understanding of the heat extraction process in EGS and CO_(2)‐EGS.This study presents a systematic review of the effects of changes in mechanical properties and behavior of deep underground rocks on the induced flow pathway and heat recovery in EGS reservoirs with or without CO_(2) storage in CO_(2) ‐EGS.Further,we proposed waterless‐stimulated EGS as an alternative approach to improve heat energy extraction in EGS.Lastly,based on the results of our literature review and proposed ideas,we recommend promising areas of investigation that may provide more insights into understanding geothermo‐mechanics to further stimulate new research studies and accelerate the development of geothermal energy as a viable clean energy technology. 展开更多
关键词 CO_(2)-EGS enhanced geothermal systems GEOMECHANICS geothermal energy underground thermal energy
原文传递
Recent Advances on Polyoxometalate-Based Ion-Conducting Electrolytes for Energy-Related Devices 被引量:2
6
作者 Dongming Cheng Ke Li +1 位作者 Hongying Zang Jiajia Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期262-274,共13页
Solid-state electrolytes have attracted considerable attention in new energyrelated devices due to their high safety and broad application platform.Polyoxometalates(POMs)are a kind of molecular-level cluster compounds... Solid-state electrolytes have attracted considerable attention in new energyrelated devices due to their high safety and broad application platform.Polyoxometalates(POMs)are a kind of molecular-level cluster compounds with unique structures.In recent years,owing to their abundant physicochemical properties(including high ionic conductivity and reversible redox activity),POMs have shown great potential in becoming a new generation of solid-state electrolytes.In this review,an overview is investigated about how POMs have evolved as ion-conducting materials from basic research to novel solid-state electrolytes in energy devices.First,some expressive POM-based ion-conducting materials in recent years are introduced and classified,mainly inspecting their structural and functional relationship.After that,it is further focused on the application of these ionconducting electrolytes in the fields of proton exchange membranes,supercapacitors,and ion batteries.In addition,some properties of POMs(such as inherent dimension,capable of forming stable hydrogen bonds,and reversible bonding to water molecules)enable these functional POM-based electrolytes to be employed in innovative applications such as ion selection,humidity sensing,and smart materials.Finally,some fundamental recommendations are given on the current opportunities and challenges of POM-based ion-conducting electrolytes. 展开更多
关键词 energy devices ion conduction POLYOXOMETALATES solid-state electrolytes
下载PDF
Layered double hydroxides as electrode materials for flexible energy storage devices 被引量:2
7
作者 Qifeng Lin Lili Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期30-45,共16页
To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on ele... To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries. 展开更多
关键词 layered double hydroxide flexible energy storage devices structural designs electrochemical performances
下载PDF
Integrated device for multiscale series vibration reduction and energy harvesting 被引量:1
8
作者 Jihou YANG Weixing ZHANG Xiaodong YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2227-2242,共16页
A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration a... A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting. 展开更多
关键词 integrated device nonlinear vibration reduction energy harvesting transient vibration energy principle
下载PDF
Mn^(4+) activated phosphors in photoelectric and energy conversion devices
9
作者 Yang Ding Chunhua Wang +8 位作者 Lang Pei Qinan Mao Sateesh Bandaru Runtian Zheng Soumyajit Maitra Meijiao Liu Li-Hua Chen Bao-Lian Su Jiasong Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期277-299,I0007,共24页
Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices... Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications. 展开更多
关键词 Mn^(4+) activator PHOSPHOR Structure tailoring Photoelectric device energy conversion
下载PDF
Green5G: Enhancing Capacity and Coverage in Device-to-Device Communication 被引量:2
10
作者 Abdul Rehman Javed Rabia Abid +4 位作者 Bakhtawar Aslam Hafiza Ammara Khalid Mohammad Zubair Khan Omar H.Alhazmi Muhammad Rizwan 《Computers, Materials & Continua》 SCIE EI 2021年第5期1933-1950,共18页
With the popularity of green computing and the huge usage of networks,there is an acute need for expansion of the 5G network.5G is used where energy efficiency is the highest priority,and it can play a pinnacle role i... With the popularity of green computing and the huge usage of networks,there is an acute need for expansion of the 5G network.5G is used where energy efficiency is the highest priority,and it can play a pinnacle role in helping every industry to hit sustainability.While in the 5G network,conventional performance guides,such as network capacity and coverage are still major issues and need improvements.Device to Device communication(D2D)communication technology plays an important role to improve the capacity and coverage of 5G technology using different techniques.The issue of energy utilization in the IoT based system is a significant exploration center.Energy optimizationin D2D communication is an important point.We need to resolve this issue for increasing system performance.Green IoT speaks to the issue of lessening energy utilization of IoT gadgets which accomplishes a supportable climate for IoT systems.In this paper,we improve the capacity and coverage of 5G technology using Multiple Inputs Multiple Outputs(MU-MIMO).MUMIMO increases the capacity of 5G in D2D communication.We also present all the problems faced by 5G technology and proposed architecture to enhance system performance. 展开更多
关键词 Green computing 5G energy efficiency resource optimization device to device communication multiple input multiple output
下载PDF
Electron Injection Enhancement by Diamond-Like Carbon Film in Polymer Electroluminescence Devices
11
作者 李宏建 闫玲玲 +4 位作者 黄伯云 易丹青 胡锦 何英旋 彭景翠 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第1期30-34,共5页
A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs)... A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs) using a radio frequency plasma deposition system. The source material of the DLC is n-butylamine. The devices consist of indium tin oxide (ITO)/MEH-PPV/DLC/Al. Electron injection properties are investigated through I-V characteristics,and the mechanism of electron injection enhancement due to a thin DLC layer has been studied. It is found that: (1) a DLC layer thinner than 1.0nm leads to a higher turn-on voltage and decreased electroluminescent (EL) efficiency; (2) a 5.0nm DLC layer significantly enhances the electron injection and results in the lowest turn-on voltage and the highest EL efficiency; (3) DLC layer that exceeds 5.0nm results in poor device performance;and(4) EL emission can hardly be detected when the layer exceeds 10.0nm. The properties of ITO/MEH-PPV/DLC/Al and ITO/MEH-PPV/LiF/Al are investigated comparatively. 展开更多
关键词 diamond-like carbon polymer electroluminescence device electron injection enhancement
下载PDF
Improved Soft Abrasive Flow Finishing Method Based on Turbulent Kinetic Energy Enhancing 被引量:9
12
作者 Jun LI Shiming JI Dapeng TAN 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期301-309,共9页
Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic ene... Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic energy enhancing is proposed. A constrained flow passage with serration cross-section is constructed to increase the turbulence intensity. Taking the constrained flow passage as the objective, a two-phase fluid dynamic model is set up by using particle trajectory model and standard k-ε turbulence model, and the flow field characteristics of the flow passage are acquired. The numerical results show that the serration flow passage can enhance the turbulence intensity, uniform the particles distribution, and increase the particle concentration near the bottom wall. The observation results by particle image velocimetry(PIV) show that the internal vortex structures are formed in flow passage, and the abrasive flow takes on turbulence concentrating phenomenon in near-wall region. The finishing experiments prove that the proposed method can obtain better surface uniformity, and the processing efficiency can be improved more 35%. This research provides an abrasive flow modeling method to reveal the particle motion regulars, and canoffer references to the technical optimization of fluid-based precision processing. 展开更多
关键词 Soft abrasive flow Serration flow passage ·Kinetic energy enhancing Particle image velocimetry
下载PDF
Analysis of the integrated test and evaluation methods of tidal current energy generating devices in the offshore testing site
13
作者 郭文瑞 朱永强 +3 位作者 叶青 李雪临 王鑫 段春明 《Marine Science Bulletin》 CAS 2014年第2期60-71,共12页
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat... Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed. 展开更多
关键词 testing ground tidal current energy generating device integrated test evaluation method
下载PDF
Experimental Study on Hydrodynamic Characteristics of Vertical-Axis Floating Tidal Current Energy Power Generation Device 被引量:3
14
作者 MAYong LI Teng-fei +3 位作者 ZHANG Liang SHENG Qi-hu ZHANG Xue-wei JIANG Jin 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期749-762,共14页
To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is car... To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD. 展开更多
关键词 tidal current energy power generation device EXPERIMENT hydrodynamic characteristics ATTENUATION wave response lateral displacement
下载PDF
Graphene-based materials for flexible energy storage devices 被引量:8
15
作者 Kena Chen Qingrong Wang +1 位作者 Zhiqiang Niu Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期12-24,共13页
The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous... The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous attention. As the key component of both supercapacitors and batteries, electrode materials with excellent flexibility should be considered to match with highly flexible energy storage devices. Owing to large surface area, good thermal and chemical stability, high conductivity and mechanical flexibility,graphene-based materials have been widely employed to serve as promising electrodes of flexible energy storage devices. Considerable efforts have been devoted to the fabrication of flexible graphene-based electrodes through a variety of strategies. Moreover, different configurations of energy storage devices based on these active materials are designed. This review highlights flexible graphene-based two-dimensional film and one-dimensional fiber supercapacitors and various batteries including lithium-ion, lithium–sulfur and other batteries. The challenges and promising perspectives of the graphene-based materials for flexible energy storage devices are also discussed. 展开更多
关键词 Graphene Flexible energy storage device
下载PDF
Nanogenerator-Based Self-Charging Energy Storage Devices 被引量:3
16
作者 Kun Zhao Yuanhao Wang +4 位作者 Lu Han Yongfei Wang Xudong Luo Zhiqiang Zhang Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期5-23,共19页
One significant challenge for electronic devices is that the energy storage devices are unable to provide su cient energy for continuous and long-time operation,leading to frequent recharging or inconvenient battery r... One significant challenge for electronic devices is that the energy storage devices are unable to provide su cient energy for continuous and long-time operation,leading to frequent recharging or inconvenient battery replacement.To satisfy the needs of next-generation electronic devices for sustainable working,conspicuous progress has been achieved regarding the development for nanogenerator-based self-charging energy storage devices.Herein,the development of the self-charging energy storage devices is summarized.Focus will be on preparation of nanomaterials for Li-ion batteries and supercapacitors,structural design of the nanogenerator-based self-charging energy storage devices,performance testing,and potential applications.Moreover,the challenges and perspectives regarding self-charging energy storage devices are also discussed. 展开更多
关键词 NANOMATERIAL NANOGENERATOR energy storage device Self-charging
下载PDF
In-plane micro-sized energy storage devices:From device fabrication to integration and intelligent designs 被引量:2
17
作者 Songshan Bi Hongmei Cao +2 位作者 Rui Wang Fang Wan Zhiqiang Niu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期25-39,I0002,共16页
The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(ME... The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs. 展开更多
关键词 Micro-sized energy storage devices Micro-batteries Micro-supercapacitors INTEGRATION Intelligent designs
下载PDF
Analytical method of radiation by a wave energy device with dual rectangular floating bodies 被引量:1
18
作者 WANG Wensheng YOU Yage +2 位作者 ZHANG Yunqiu WU Bijun YE Yin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第3期106-115,共10页
The system with one floating rectangular body on the free surface and one submerged rectangular body has been applied to a wave energy conversion device in water of finite depth. The radiation problem by this device o... The system with one floating rectangular body on the free surface and one submerged rectangular body has been applied to a wave energy conversion device in water of finite depth. The radiation problem by this device on a plane incident wave is solved by the use of an eigenfunction expansion method, and a new analytical expression for the radiation velocity potential is obtained. The wave excitation force is calculated via the known incident wave potential and the radiation potential with a theorem of Haskind employed. To verify the correctness of this method, an example is computed respectively through the bound element method and analytical method. Results show that two numerical methods. are in good agreement, which shows that the present method is applicable. In addition, the trends of hydrodynamic coefficients and wave force are analyzed under different conditions by use of the present analytical method. 展开更多
关键词 wave energy device hydrodynamic coefficients wave force analytical method
下载PDF
Volume conduction energy transfer for implantable devices 被引量:1
19
作者 Wei Zhu Wenzhu Fang +3 位作者 Shanshan Zhan Yuxuan Zhou Qing Gao Xingya Gao 《The Journal of Biomedical Research》 CAS 2013年第6期509-514,共6页
A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect o... A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source. 展开更多
关键词 volume conduction implantable device SIMULATION energy transfer
下载PDF
Flexible energy storage devices for wearable bioelectronics 被引量:2
20
作者 Xiaohao Ma Zhengfan Jiang Yuanjing Lin 《Journal of Semiconductors》 EI CAS CSCD 2021年第10期71-83,共13页
With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted... With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research interests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flexible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flexible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summarized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed. 展开更多
关键词 flexible electronics energy storage devices self-powered systems wearable bioelectronics
下载PDF
上一页 1 2 219 下一页 到第
使用帮助 返回顶部