In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam modu...In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam module synchronously to the FSW-process. The effect of the ultrasound on the resulting welds, their microstructure and their corrosion properties was investigated by light and scanning electron microscopy and corrosion investigations. The USE-FSW-joints showed less and smaller steel particles in the nugget zone as well as a thinner continuous intermetallic phase of FeAl3 at the interface. The nondestructive testing method of computed laminography proved the observations made by optic microscopy due to non-porous joints for both techniques. Corrosion investigations showed only low corrosion current densities and no enhanced galvanic corrosion for the EN AW-6061/DC04-hybrid joints in sodium chloride solution.展开更多
The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex b...The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.展开更多
基金supported by the DFG Priority Program 1640:“Joining by plastic deformation”
文摘In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam module synchronously to the FSW-process. The effect of the ultrasound on the resulting welds, their microstructure and their corrosion properties was investigated by light and scanning electron microscopy and corrosion investigations. The USE-FSW-joints showed less and smaller steel particles in the nugget zone as well as a thinner continuous intermetallic phase of FeAl3 at the interface. The nondestructive testing method of computed laminography proved the observations made by optic microscopy due to non-porous joints for both techniques. Corrosion investigations showed only low corrosion current densities and no enhanced galvanic corrosion for the EN AW-6061/DC04-hybrid joints in sodium chloride solution.
文摘The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.