期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation 被引量:26
1
作者 Fuqing ZHANG Meng ZHANG James A. HANSEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期1-8,共8页
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim... This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations. 展开更多
关键词 data assimilation four-dimensional variational data assimilation ensemble Kalman filter Lorenz model hybrid method
下载PDF
Review on Mathematical Perspective for Data Assimilation Methods: Least Square Approach
2
作者 Muhammed Eltahan 《Journal of Applied Mathematics and Physics》 2017年第8期1589-1606,共18页
Environmental systems including our atmosphere oceans, biological… etc. can be modeled by mathematical equations to estimate their states. These equations can be solved with numerical methods. Initial and boundary co... Environmental systems including our atmosphere oceans, biological… etc. can be modeled by mathematical equations to estimate their states. These equations can be solved with numerical methods. Initial and boundary conditions are needed for such of these numerical methods. Predication and simulations for different case studies are major sources for the great importance of these models. Satellite data from different wide ranges of sensors provide observations that indicate system state. So both numerical models and satellite data provide estimation of system states, and between the different estimations it is required the best estimate for system state. Assimilation of observations in numerical weather models with data assimilation techniques provide an improved estimate of system states. In this work, highlights on the mathematical perspective for data assimilation methods are introduced. Least square estimation techniques are introduced because it is considered the basic mathematical building block for data assimilation methods. Stochastic version of least square is included to handle the error in both model and observation. Then the three and four dimensional variational assimilation 3dvar and 4dvar respectively will be handled. Kalman filters and its derivatives Extended, (KF, EKF, ENKF) and hybrid filters are introduced. 展开更多
关键词 Least SQUARE method data assimilation ensemble Filter Hybrid FILTERS
下载PDF
Groundwater contaminant source identification based on iterative local update ensemble smoother 被引量:1
3
作者 YANG Ai-lin JIANG Si-min +3 位作者 LIU Jin-bing JIANG Qian-yun ZHOU Ting ZHANG Wen 《Journal of Groundwater Science and Engineering》 2020年第1期1-9,共9页
Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical gro... Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems. 展开更多
关键词 Groundwater contamination Groundwater inverse problem Source identification ensemble smoother data assimilation
下载PDF
Forming proper ensemble forecast initial members with four-dimensional variational data assimilation method 被引量:6
4
作者 Jiandong Gong Weijing Li Jifan Chou 《Chinese Science Bulletin》 SCIE EI CAS 1999年第16期1527-1531,共5页
A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generat... A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generated by Monte Carlo forecast (MCF) or lagged average forecast (LAF). This method possesses significant statistical characteristic of MCF, and by virtue of LAF that contains multi-time information and its initial members are harmonic with 展开更多
关键词 ensemble FORECAST INITIAL member generating four-dimensional variational data assimilation method numeri-cal FORECAST experiments.
下载PDF
基于相关性局域化迭代集合平滑反演渗透系数场 被引量:2
5
作者 夏传安 王浩 简文彬 《水文地质工程地质》 CSCD 北大核心 2024年第1期12-21,共10页
在地下水流和溶质运移问题中,有较多研究基于物理距离局域化集合同化方法反演水文地质参数。当反演参数与观测信息之间不存在物理距离时,这种方法不适用。为了克服这个局限,通过渗透系数与水头信息之间的相关性计算局域化方法的阻滞因子... 在地下水流和溶质运移问题中,有较多研究基于物理距离局域化集合同化方法反演水文地质参数。当反演参数与观测信息之间不存在物理距离时,这种方法不适用。为了克服这个局限,通过渗透系数与水头信息之间的相关性计算局域化方法的阻滞因子,构建基于相关性的局域化迭代集合平滑方法。为了方便比较,将该方法和一种基于物理距离的局域化迭代集合平滑一同用于同化水头信息反演二维孔隙承压含水层的渗透系数场。算例中考虑了不同集合大小、观测误差及观测数量等因子的组合,便于分析其对渗透系数反演精度的影响。研究结果显示:(1)在所有算例中新方法得到的渗透系数均方根误差范围为[0.8307,0.9590],都小于基于物理距离方法的均方根误差,范围为[0.8394,1.0000];(2)基于物理距离方法得到的渗透系数场空间上存在不连续性,而新方法的结果不存在此现象。文章提出了一种新的基于相关性局域化迭代平滑方法,该方法不需要依赖参数与观测信息之间的物理距离且参数反演精度高于基于物理距离的方法,可作为参数反演的科学工具。 展开更多
关键词 数据同化 相关性局域化 迭代集合平滑 物理距离局域化 渗透系数场
下载PDF
一种新的估计非高斯分布含水层渗透系数场的方法
6
作者 孙猛 骆乾坤 +3 位作者 孔志伟 郭明 刘明力 钱家忠 《水文地质工程地质》 CAS CSCD 北大核心 2024年第3期23-33,共11页
集合卡尔曼滤波(ensemble Kalman filter,EnKF)是最流行的数据同化方法之一。然而,在处理非高斯问题时,EnKF存在局限性。为了解决非高斯问题并准确描述含水介质连通性,将正态分数变换(normal-score transformation,NST)与多重数据同化... 集合卡尔曼滤波(ensemble Kalman filter,EnKF)是最流行的数据同化方法之一。然而,在处理非高斯问题时,EnKF存在局限性。为了解决非高斯问题并准确描述含水介质连通性,将正态分数变换(normal-score transformation,NST)与多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)相结合,提出NS-ES-MDA方法。通过对比实验,验证了NS-ES-MDA方法估计非高斯分布含水层渗透系数场的有效性。相较于重启正态分数集合卡尔曼滤波器(restart normal-score ensemble Kalman filter,rNS-EnKF)方法,NS-ES-MDA在吸收相同数据后,参数估计精度提升约34%,计算效率提升约35%。此外,NS-ES-MDA方法受“异参同效”现象的影响较小,具有较强的更新能力,能够保障得到较准确的参数估计值。研究可为非高斯分布含水层参数估计提供一种有效的求解方法。 展开更多
关键词 数据同化 非高斯场 参数估计 集合平滑器 正态分数变换 渗透系数
下载PDF
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
7
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
Doppler Radar Data Assimilation with a Local SVD-En3DVar Method 被引量:3
8
作者 徐道生 邵爱梅 邱崇践 《Acta meteorologica Sinica》 SCIE 2012年第6期717-734,共18页
An observation localization scheme is introduced into an ensemble-based three-dimensional variational (3DVar) assimilation method based on the singular value decomposition technique (SVD-En3DVar) to im- prove assi... An observation localization scheme is introduced into an ensemble-based three-dimensional variational (3DVar) assimilation method based on the singular value decomposition technique (SVD-En3DVar) to im- prove assimilation skill. A point-by-point analysis technique is adopted in which the weight of each obser- vation decreases with increasing distance between the analysis point and the observation point. A set of numerical experiments, in which simulated Doppler radar data are assimilated into the Weather Research and Forecasting (WRF) model, is designed to test the scheme. The results are compared with those ob- tained using the original global and local patch schemes in SVD-En3DVar, neither of which includes this type of observation localization. The observation localization scheme not only eliminates spurious analysis increments in areas of missing data, but also avoids the discontinuous analysis fields that arise from the local patch scheme. The new scheme provides better analysis fields and a more reasonable short-range rainfall forecast than the original schemes. Additional forecast experiments that assimilate real data from i0 radars indicate that the short-term precipitation forecast skill can be improved by assimilating radar data and the observation localization scheme provides a better forecast than the other two schemes. 展开更多
关键词 Doppler radar ensemble data assimilation 3DVar (three-dimensional variational) method SVD (singular value decomposition) localization
下载PDF
GRACE terrestrial water storage data assimilation based on the ensemble four-dimensional variational method PODEn4DVar:Method and validation 被引量:3
9
作者 SUN Qin XIE ZhengHui TIAN XiangJun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第3期371-384,共14页
Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity chan... Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity changes by the Gravity Recovery and Climate Experiment(GRACE) satellites,are mainly caused by precipitation,evapotranspiration,river transportation and downward infiltration processes.In this study,a land data assimilation system LDAS-G was developed to assimilate the GRACE terrestrial water storage(TWS) data into the Community Land Model(CLM3.5) using the POD-based ensemble four-dimensional variational assimilation method PODEn4 DVar,disaggregating the GRACE large-scale terrestrial water storage changes vertically and in time,and placing constraints on the simulation of vertical hydrological variables to improve land surface hydrological simulations.The ideal experiments conducted at a single point and assimilation experiments carried out over China by the LDAS-G data assimilation system showed that the system developed in this study improved the simulation of land surface hydrological variables,indicating the potential of GRACE data assimilation in large-scale land surface hydrological research and applications. 展开更多
关键词 data assimilation land surface model terrestrial water storage ensemble four-dimensional variational data assimilation method
原文传递
Ensemble-based diurnally varying background error covariances and their impact on short-term weather forecasting
10
作者 Shiwei Zheng Yaodeng Chen +3 位作者 Xiang-Yu Huang Min Chen Xianya Chen Jing Huang 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第6期22-28,共7页
Background error covariance(BEC)plays an essential role in variational data assimilation.Most variational data assimilation systems still use static BEC.Actually,the characteristics of BEC vary with season,day,and eve... Background error covariance(BEC)plays an essential role in variational data assimilation.Most variational data assimilation systems still use static BEC.Actually,the characteristics of BEC vary with season,day,and even hour of the background.National Meteorological Center-based diurnally varying BECs had been proposed,but the diurnal variation characteristics were gained by climatic samples.Ensemble methods can obtain the background error characteristics that suit the samples in the current moment.Therefore,to gain more reasonable diurnally varying BECs,in this study,ensemble-based diurnally varying BECs are generated and the diurnal variation characteristics are discussed.Their impacts are then evaluated by cycling data assimilation and forecasting experiments for a week based on the operational China Meteorological Administration-Beijing system.Clear diurnal variation in the standard deviation of ensemble forecasts and ensemble-based BECs can be identified,consistent with the diurnal variation characteristics of the atmosphere.The results of one-week cycling data assimilation and forecasting show that the application of diurnally varying BECs reduces the RMSEs in the analysis and 6-h forecast.Detailed analysis of a convective rainfall case shows that the distribution of the accumulated precipitation forecast using the diurnally varying BECs is closer to the observation than using the static BEC.Besides,the cycle-averaged precipitation scores in all magnitudes are improved,especially for the heavy precipitation,indicating the potential of using diurnally varying BEC in operational applications. 展开更多
关键词 data assimilation Background error covariance Diurnal variation ensemble method
下载PDF
地下水污染强度及渗透系数场的反演识别研究 被引量:6
11
作者 吴延浩 江思珉 吴自军 《水文地质工程地质》 CAS CSCD 北大核心 2023年第4期193-203,共11页
在制定地下水污染修复方案时,污染源参数和渗透系数场是最重要的地下水数值模型参数,但前人研究多集中于单一类型参数的识别。文章中采用地下水污染物运移模型(MT3DMS)和数据同化方法(迭代局部更新集合平滑器,ILUES)构成地下水污染源识... 在制定地下水污染修复方案时,污染源参数和渗透系数场是最重要的地下水数值模型参数,但前人研究多集中于单一类型参数的识别。文章中采用地下水污染物运移模型(MT3DMS)和数据同化方法(迭代局部更新集合平滑器,ILUES)构成地下水污染源识别的求解框架,并利用Karhunen-Loève展开技术实现渗透系数场的参数降维,最后通过同化水头与浓度数据实现地下水污染源强和渗透系数场的联合反演。结果表明:(1)ILUES算法能精确识别污染源参数和渗透系数场,并且具有很高的普适性;(2)精确表征渗透系数在空间上呈现出的非均质性,是预测污染物迁移路径、反演污染强度的关键;(3)ILUES算法参数影响着反演效果,综合考虑计算效率和计算精度等,可以得到算例的最佳样本集合大小(Ne=4000)和ILUES算法最佳参数组合(局部临近样本集合占比α=0.4,相对权重b=4)。但在实际工程案例中,如果对精度的要求不是过高,经验组合(α=0.1,b=1)更值得推荐。研究结果对于区域地下水资源调查、评价和管理等工作具有较强的实践意义,并可为后期地下水污染预测及地下水监测井网优化提供技术支撑。 展开更多
关键词 地下水污染 参数反演 数据同化 集合平滑器
下载PDF
基于EnKS和SWAT模型的闽江流域径流数据同化
12
作者 项勇 陈芸芝 +1 位作者 唐丽芳 汪小钦 《水资源与水工程学报》 CSCD 北大核心 2023年第4期66-75,共10页
地表水文过程中观测变量对状态变量的响应存在时间滞后性,为提高径流数据同化的精度,以闽江流域为研究区,基于集合卡尔曼平滑器(EnKS)和SWAT模型,构建径流数据同化方案,并与集合卡尔曼滤波(EnKF)方法进行对比,评价不同同化模型的精度,... 地表水文过程中观测变量对状态变量的响应存在时间滞后性,为提高径流数据同化的精度,以闽江流域为研究区,基于集合卡尔曼平滑器(EnKS)和SWAT模型,构建径流数据同化方案,并与集合卡尔曼滤波(EnKF)方法进行对比,评价不同同化模型的精度,分析数据同化对不同径流分量的影响。结果表明:EnKS最优时间窗口长度在不同水文周期、流域存在差异;考虑水文模型的时间滞后性可以有效提高模型的同化精度,对比EnKF方法,EnKS方法的纳什效率系数(NSE)在七里街、沙县、竹岐3个站点上分别提升了0.03、0.12、0.03,均方根误差(RMSE)分别减小了7.43%、26.81%、4.25%;数据同化方法对不同径流分量的改进程度存在空间异质性和时间异质性,在高渗透率土壤和陡坡区域EnKS方法能使壤中流获得更显著的改进,丰水期EnKS方法对地表径流的改进较枯水期更明显。 展开更多
关键词 径流 数据同化 EnKS法 SWAT模型 滞后性 闽江流域
下载PDF
Simultaneous estimation of surface soil moisture and soil properties with a dual ensemble Kalman smoother 被引量:1
13
作者 CHU Nan HUANG ChunLin +1 位作者 LI Xin DU PeiJun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第12期2327-2339,共13页
In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moi... In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation. 展开更多
关键词 soil moisture soil properties data assimilation state-parameter estimation dual ensemble Kalman smoother
原文传递
集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用 被引量:35
14
作者 朱江 汪萍 《大气科学》 CSCD 北大核心 2006年第5期871-882,共12页
此文目的是讨论污染源反演问题的统计方法。基于Bayes估计理论,该文将资料同化中的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波应用在污染源反演问题中。在详细给出污染源反演的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波的严格数学表达... 此文目的是讨论污染源反演问题的统计方法。基于Bayes估计理论,该文将资料同化中的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波应用在污染源反演问题中。在详细给出污染源反演的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波的严格数学表达后,用一个简单的模型演示了集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的可行性,并且通过对比理想试验结果比较了集合卡尔曼平滑和集合卡尔曼滤波方法在反演污染源排放的效果,讨论了观测误差和污染源先验误差估计对反演结果的影响。试验结果表明在观测间隔小和观测误差小的情况下,集合卡尔曼滤波和集合卡尔曼平滑都可以有效地反演出随时间变化的污染源排放。当观测误差增大时,集合卡尔曼滤波和集合卡尔曼平滑的反演效果都有一定降低,但是反演误差的增加少于观测误差的增加,同时集合卡尔曼平滑(Ensemble Kalman smoother,简称EnKS)对观测误差比集合卡尔曼滤波(Ensemble Kalman fil-ter,简称EnKF)更为敏感。当观测时间间隔较大时,EnKF不能对没有观测时的污染源排放进行估计,仅能对有观测时的污染源排放进行较好的反演。而EnKS可以利用观测对观测时刻前的污染源排放进行反演,因此其效果明显好于EnKF,并且在观测时间间隔较大的情况下依然可以较好地反演出污染源排放。试验结果还显示污染源排放的先验误差估计对反演的结果有较大影响。 展开更多
关键词 集合卡尔曼平滑 集合卡尔曼滤波 空气质量 污染源 反演模拟 资料同化
下载PDF
遥感反演时间序列叶面积指数的集合卡尔曼平滑算法 被引量:5
15
作者 靳华安 王锦地 +1 位作者 肖志强 李喜佳 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第9期2485-2490,共6页
基于MODIS LAI产品数据集(MOD15A2)构建经验性的LAI动态模型,以LAI作为连接参数,将LAI动态模型与植被辐射传输模型MCRM2相耦合,提出了将耦合模型与时间序列MODIS反射率观测数据集(MOD09A1)同化进行LAI反演的方案。将集合卡尔曼平滑(EnKS... 基于MODIS LAI产品数据集(MOD15A2)构建经验性的LAI动态模型,以LAI作为连接参数,将LAI动态模型与植被辐射传输模型MCRM2相耦合,提出了将耦合模型与时间序列MODIS反射率观测数据集(MOD09A1)同化进行LAI反演的方案。将集合卡尔曼平滑(EnKS)方法引入到LAI同化反演中,为更好地评价该算法的适用性,还与集合卡尔曼滤波(EnKF)的LAI反演结果、MODIS LAI产品进行了比较分析。研究结果表明,采用EnKS方法的反演结果较为理想,与EnKF方法和MODIS LAI相比,EnKS方法反演的LAI时间廓线更平滑,更具连续性,符合实际的植被生长规律。基于EnKS方法的LAI反演方案,为提取时间连续的LAI廓线提供了一种有效的途径。 展开更多
关键词 叶面积指数 数据同化 MODIS 集合卡尔曼平滑
下载PDF
资料同化方法在空气污染数值预报中的应用研究 被引量:12
16
作者 白晓平 李红 +2 位作者 方栋 Francesca Costabile 刘峰磊 《环境科学》 EI CAS CSCD 北大核心 2008年第2期283-289,共7页
基于第5代中尺度非静力气象模式MM5以及区域气溶胶和沉积模式REMSAD耦合的空气污染数值预报模型系统,分别采用最优插值法和集合卡尔曼滤波法对南京2002-08~2002-09 NOx和SO2模型预报结果进行了资料同化试验,结果表明,NOx和SO2经最优插... 基于第5代中尺度非静力气象模式MM5以及区域气溶胶和沉积模式REMSAD耦合的空气污染数值预报模型系统,分别采用最优插值法和集合卡尔曼滤波法对南京2002-08~2002-09 NOx和SO2模型预报结果进行了资料同化试验,结果表明,NOx和SO2经最优插值法同化后偏差平均值的改进率分别为34.20%、47.53%,均方根误差的改进率分别为31.95%、42.04%;NOx和SO2经集合个数为30的集合卡尔曼滤波法同化后偏差平均值的改进率分别为26.73%、60.75%,均方根误差的改进率分别为25.20%、55.16%;说明最优插值法和集合卡尔曼滤波法都具有改善空气污染数值预报中污染物浓度初始场的作用.进行了集合卡尔曼滤波法中集合个数为61时2种同化方法同化效果比较的试验,结果表明,随着集合卡尔曼滤波法集合个数的增加,NOx和SO2的同化效果都较集合个数为30时有所改善,并且,集合卡尔曼滤波法对NOx和SO2模式预报结果的改善效果将好于最优插值法. 展开更多
关键词 资料同化 空气污染 数值预报 最优插值法 集合卡尔曼滤波
下载PDF
ES-MDA算法融合ERT数据联合反演地下水污染源与含水层参数 被引量:5
17
作者 周念清 张瑞城 +1 位作者 江思珉 夏学敏 《南水北调与水利科技(中英文)》 CAS 北大核心 2022年第3期478-486,共9页
针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance... 针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。 展开更多
关键词 数据同化 集合平滑 地球物理 高密度电阻率法 渗透系数场
下载PDF
耦合遗传算法的数据同化系统误差处理方法 被引量:2
18
作者 摆玉龙 李新 《解放军理工大学学报(自然科学版)》 EI 北大核心 2011年第6期702-708,共7页
针对数据同化系统中的误差估计与处理问题,介绍了集合滤波数据同化系统中各种误差来源及特征;侧重于在集合数据同化中为防止滤波发散的乘数放大法、附加放大法和松弛先验法等模型误差处理方案,利用经典的非线性模型——Lorenz模型开展... 针对数据同化系统中的误差估计与处理问题,介绍了集合滤波数据同化系统中各种误差来源及特征;侧重于在集合数据同化中为防止滤波发散的乘数放大法、附加放大法和松弛先验法等模型误差处理方案,利用经典的非线性模型——Lorenz模型开展了数值试验。在此基础上,提出了一种耦合遗传寻优算法的数据同化系统,来解决以往的误差调节因子由反复实验法设定的问题;进而结合乘数放大法全局放大和附加放大法局部调节的特点,提出了一种新的混合误差处理方法。结果显示,这些方法可以在适应度函数的约束下自适应地获取最优误差因子,达到最优的同化效果,从而提出了在数据同化系统中为同化实际观测资料可采取的误差处理新思路。 展开更多
关键词 数据同化 误差处理 乘数放大法 附加放大法 松弛先验法 Lorenz模型
下载PDF
基于多次数据吸收集合平滑算法的自动油藏历史拟合研究 被引量:6
19
作者 王泽龙 刘先贵 +2 位作者 唐海发 吕志凯 刘群明 《特种油气藏》 CAS CSCD 北大核心 2021年第3期99-105,共7页
针对常见历史拟合方法存在计算量大、油藏参数更新异常、油藏模型修正失真等问题。采用集合平滑算法,通过引入集合卡尔曼滤波算法(EnKF)中多次迭代思路,对相同数据重复吸收,推导出多次数据吸收集合平滑算法(ES-MDA)的核心公式,并编写了... 针对常见历史拟合方法存在计算量大、油藏参数更新异常、油藏模型修正失真等问题。采用集合平滑算法,通过引入集合卡尔曼滤波算法(EnKF)中多次迭代思路,对相同数据重复吸收,推导出多次数据吸收集合平滑算法(ES-MDA)的核心公式,并编写了自动油藏历史拟合软件。以北海布伦特油田海相砂岩油藏为例,将基于ES-MDA算法的油藏自动历史拟合程序应用于该油藏,对油田的注水采油开发进行历史拟合。结果表明:油藏数值模拟的预测数据与实际测量的数据匹配程度达到90%以上,且能够较准确地表征真实油藏的孔隙度分布特征;ES-MDA算法具有算法稳定、运行效率高、模型更新准确等优点。研究成果对实现计算机自动油藏历史拟合,实时优化油藏生产具有重要意义。 展开更多
关键词 历史拟合 数学模型 模拟算法 数据吸收 集合平滑 集合卡尔曼滤波
下载PDF
基于集合卡尔曼平滑算法的土壤水分同化 被引量:5
20
作者 褚楠 黄春林 杜培军 《水科学进展》 EI CAS CSCD 北大核心 2015年第2期243-249,共7页
为研究观测资料稀少情况下土壤质地及有机质对土壤水分同化的影响,发展了集合卡尔曼平滑(Ensemble Kalman Smooth,En KS)的土壤水分同化方案。利用黑河上游阿柔冻融观测站2008年6月1日至10月29日的观测数据,使用En KS算法将表层土壤水... 为研究观测资料稀少情况下土壤质地及有机质对土壤水分同化的影响,发展了集合卡尔曼平滑(Ensemble Kalman Smooth,En KS)的土壤水分同化方案。利用黑河上游阿柔冻融观测站2008年6月1日至10月29日的观测数据,使用En KS算法将表层土壤水分观测数据同化到简单生物圈模型(Simple Biosphere Model 2,Si B2)中,分析不同方案对土壤水分估计的影响,并与集合卡尔曼滤波算法(En KF)的结果进行比较。研究结果表明,土壤质地和有机质对表层土壤水分模拟结果影响最大而对深层的影响相对较小;利用En KF和En KS算法同化表层土壤水分观测数据,均能够显著提高表层和根区土壤水分估计的精度,En KS算法的精度略高于En KF且所受土壤质地和有机质的影响小于En KF;当观测数据稀少时,En KS算法仍然可以得到较高精度的土壤水分估计。 展开更多
关键词 土壤水分 数据同化 集合卡尔曼滤波 集合卡尔曼平滑 土壤质地 土壤有机质
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部