A low frequency dynamic environment prediction of spacecraft using dynamic substructu- ring is presented. The dynamic environment could be used to describe the level of the excitation on the spacecraft itself and auxi...A low frequency dynamic environment prediction of spacecraft using dynamic substructu- ring is presented. The dynamic environment could be used to describe the level of the excitation on the spacecraft itself and auxiliary equipment. In addition, the dynamic environment is a criterion for the structural dynamic design as well as the ground verification test. The proposed prediction method could solve two major problems. The first is the time consumption of analyzing the whole spacecraft model due to the huge amount of degrees of freedom, and the second is multi-source for component structural dynamic models from distributive departments. To demonstrate the feasibility and efficien- cy, the proposed prediction method is applied to resolve a launching satellite case, and the results were compared with those obtained by the traditional prediction technology using the finite element method.展开更多
JOGMEC (Japan Oil, Gas and Metals National Corporation) has conducted exploration and research in Japan's EEZ (exclusive economic zone) from fiscal year 2008, under contract by the METI (Ministry of Economy, Tra...JOGMEC (Japan Oil, Gas and Metals National Corporation) has conducted exploration and research in Japan's EEZ (exclusive economic zone) from fiscal year 2008, under contract by the METI (Ministry of Economy, Trade and Industry), for the commercialization of SMS (Seafloor Massive Sulfide). As there is currently no commercial mining precedent of SMS, it is necessary to consider the potential impacts of mining on the surrounding environment, and to promote long term sustainable projects. In particular, due to the existence of specific chemosynthetic ecosystems and unique biological communities around the SMS area, both quantitative evaluations of potential environmental impacts and consequent environmental conservation strategies, are necessary in order to avoid and or minimize the potential detrimental effects to the ecosystem, as much as possible. The environmental research programs consist of baseline surveys, environmental impact modeling, and methodological concepts which will be applied to conserve biodiversity. In this paper, we will primarily provide an overview of the project conducted by JOGMEC during 2008-2012.展开更多
The environment shear stress of Tangshan main earthquake and 38 great aftershocks have been calculated by the acceleration data of Tangshan earthquake sequence. The environment shear stress for 52 smaller aftershocks ...The environment shear stress of Tangshan main earthquake and 38 great aftershocks have been calculated by the acceleration data of Tangshan earthquake sequence. The environment shear stress for 52 smaller aftershocks from July of 1982 to July of 1984 have also been calculated by use of the digital data of the Sino-American cooperation recorded by the instrumental arrays in Tangshan. The results represent that the environment shear stress τ0 values have a weak dependence on the seismic moment, only the small and moderate earthquakes will be able to occur in the region with smaller τ0 value and the large earthquakes are only in the region with greater τ0 value. The peak acceleration, velocity and displacement will be larger for the earthquakes occurred in the region with greater τ0 value, Therefore, the measurement of environment shear stress τ0 value for the significant region will play an important role in earthquske prediction and engineering shock-proof. The environment shear stress values for the great aftershocks occurred in the two ends of the main fault are often higher than that for the main shock. This case may represent the stress concentration in the two ends of the fault. This phenomenon provides the references for the place where the great aftershock will occur.展开更多
基金Supported by the Ministerial Level Foundation(2012021)
文摘A low frequency dynamic environment prediction of spacecraft using dynamic substructu- ring is presented. The dynamic environment could be used to describe the level of the excitation on the spacecraft itself and auxiliary equipment. In addition, the dynamic environment is a criterion for the structural dynamic design as well as the ground verification test. The proposed prediction method could solve two major problems. The first is the time consumption of analyzing the whole spacecraft model due to the huge amount of degrees of freedom, and the second is multi-source for component structural dynamic models from distributive departments. To demonstrate the feasibility and efficien- cy, the proposed prediction method is applied to resolve a launching satellite case, and the results were compared with those obtained by the traditional prediction technology using the finite element method.
文摘JOGMEC (Japan Oil, Gas and Metals National Corporation) has conducted exploration and research in Japan's EEZ (exclusive economic zone) from fiscal year 2008, under contract by the METI (Ministry of Economy, Trade and Industry), for the commercialization of SMS (Seafloor Massive Sulfide). As there is currently no commercial mining precedent of SMS, it is necessary to consider the potential impacts of mining on the surrounding environment, and to promote long term sustainable projects. In particular, due to the existence of specific chemosynthetic ecosystems and unique biological communities around the SMS area, both quantitative evaluations of potential environmental impacts and consequent environmental conservation strategies, are necessary in order to avoid and or minimize the potential detrimental effects to the ecosystem, as much as possible. The environmental research programs consist of baseline surveys, environmental impact modeling, and methodological concepts which will be applied to conserve biodiversity. In this paper, we will primarily provide an overview of the project conducted by JOGMEC during 2008-2012.
文摘The environment shear stress of Tangshan main earthquake and 38 great aftershocks have been calculated by the acceleration data of Tangshan earthquake sequence. The environment shear stress for 52 smaller aftershocks from July of 1982 to July of 1984 have also been calculated by use of the digital data of the Sino-American cooperation recorded by the instrumental arrays in Tangshan. The results represent that the environment shear stress τ0 values have a weak dependence on the seismic moment, only the small and moderate earthquakes will be able to occur in the region with smaller τ0 value and the large earthquakes are only in the region with greater τ0 value. The peak acceleration, velocity and displacement will be larger for the earthquakes occurred in the region with greater τ0 value, Therefore, the measurement of environment shear stress τ0 value for the significant region will play an important role in earthquske prediction and engineering shock-proof. The environment shear stress values for the great aftershocks occurred in the two ends of the main fault are often higher than that for the main shock. This case may represent the stress concentration in the two ends of the fault. This phenomenon provides the references for the place where the great aftershock will occur.