The epidosites are interpreted to form in upflow zones at the base of ore-forming oceanic hydrothermal systems that vent as black smokers on the sea floor. This study presents new field, major and trace element, and o...The epidosites are interpreted to form in upflow zones at the base of ore-forming oceanic hydrothermal systems that vent as black smokers on the sea floor. This study presents new field, major and trace element, and oxygen isotope data for the recently discovered epidosites in the ca. 1.0 Ga Miaowan (庙湾) ophiolite located near the northern margin of the Yangtze craton. The ep-idosites occur mainly in the cores of strongly de-formed, lensoidal amphibolites. Field observations, major and trace elements and oxygen isotopes sug-gest that the epidosites were formed by metasoma-tism of ocean floor basalts, diabase dykes, and gabbros during seafloor hydrothermal alteration.展开更多
基金supported by the China Postdoctoral Science Foundation (No. 20100471203)the Ministry of Land and Resources (No. 1212010670104)+1 种基金the National Natural Science Foundation of China (Nos. 91014002, 40821061, 41272242)Ministry of Education of China (Nos. B07039 and TGRC201024)
文摘The epidosites are interpreted to form in upflow zones at the base of ore-forming oceanic hydrothermal systems that vent as black smokers on the sea floor. This study presents new field, major and trace element, and oxygen isotope data for the recently discovered epidosites in the ca. 1.0 Ga Miaowan (庙湾) ophiolite located near the northern margin of the Yangtze craton. The ep-idosites occur mainly in the cores of strongly de-formed, lensoidal amphibolites. Field observations, major and trace elements and oxygen isotopes sug-gest that the epidosites were formed by metasoma-tism of ocean floor basalts, diabase dykes, and gabbros during seafloor hydrothermal alteration.