期刊文献+
共找到54,845篇文章
< 1 2 250 >
每页显示 20 50 100
A novel high-efficient P/N/Si-containing APP-based flame retardant with a silane coupling agent in its molecular structure for epoxy resin
1
作者 Qiang Sun Jinlei Wang +2 位作者 Xue Meng Jie Zhang Hong Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期137-147,共11页
A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium po... A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy. 展开更多
关键词 Ammonium polyphosphate Silane coupling agent All-in-one system Flame retardancy epoxy resin
下载PDF
A Boron-based Adhesion Aid for Efficient Bonding of Silicone Rubber and Epoxy Resin
2
作者 王安东 ZHOU Peng +6 位作者 TANG Xiaolin YI Shengping ZENG Qihui ZHANG Zhiqiang HU Mingjie 廖俊 黄驰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期718-724,共7页
We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experime... We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites. 展开更多
关键词 boron based adhesion promoter epoxy resin composites silicone rubber adhesion mechanism
原文传递
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
3
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 Polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
An Experimental Study on the Reinforcement of Weakly-Consolidated Shallow Formation in Deep Water Using an Epoxy Resin-Based Fluid
4
作者 Leiju Tian Yuhuan Bu +1 位作者 Huajie Liu Lingyun Zhao 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1215-1226,共12页
The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–... The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–formation interface.In this study,a water-borne epoxy resin was applied as a strengthening material to reinforce the weakly consolidated shallow formation and protect the cement sheath from potential failure.The mechanical properties of the unconsolidated clay were tested,including their changes with increases in the temperature and curing time.In addition,the effects of the seawater,cement slurry alkaline filtrate,and saltwater drilling fluid were evaluated.As confirmed by the results,the strengthening fluid was excellent at reinforcing the unconsolidated clay,with a compressive strength of 2.49 MPa(after curing for 7 days),even at a dosage of 5%.A cement slurry filtrate with a high pH was suitable to produce the required strengthening of the formation,especially its early age strength.It should also be pointed out that the used fluid exhibited good compatibility with the saltwater drilling fluid and seawater behaved well as a diluent for the strengthening fluid. 展开更多
关键词 Manuscript compressive strength deepwater oil and gas well well cementing epoxy resin weakly consolidated shallow formation
下载PDF
Toughness Effect of Graphene Oxide-Nano Silica on Thermal-Mechanical Performance of Epoxy Resin
5
作者 徐铭涛 张苏心 +4 位作者 周霞 张岩 王萍 谷志旗 李媛媛 《Journal of Donghua University(English Edition)》 CAS 2023年第6期580-589,共10页
A graphene oxide/nano-silica(GOS)hybrid was rapidly and easily synthesized using graphene oxide(GO)and nano-silica(nano-SiO_(2))as raw materials,and the synthesized GOS was used to improve the mechanical properties of... A graphene oxide/nano-silica(GOS)hybrid was rapidly and easily synthesized using graphene oxide(GO)and nano-silica(nano-SiO_(2))as raw materials,and the synthesized GOS was used to improve the mechanical properties of epoxy resin(EP).The modified EP with different mass fractions of GOS(0,0.1%,0.2%,0.3%and 0.4%)were prepared and studied.The structure,thermal stability,mechanical properties,fracture toughness and failure morphology of the modified EP were analyzed.The results showed that the tensile strength of GOS modified EP increased from 40.6 MPa to 80.2 MPa compared with EP,the critical stress intensity factor of GOS modified EP increased by 65.9%from 0.82 MPa·m^(1/2)to 1.36 MPa·m^(1/2),indicating a significant enhancement in fracture toughness.In addition,failure morphology was observed by scanning electron microscopy(SEM)observation.The toughness mechanism of the modified EP was also discussed.Finally,the thermal stability of the modified EP was improved by the addition of GOS.Compared with neat EP,the initial thermal degradation temperature and glass transition temperature of GOS modified EP increased by 4.5℃and 10.3℃,respectively. 展开更多
关键词 toughness modification epoxy resin(EP) graphene oxide(GO) NANO-SILICA mechanical property failure mechanism thermal behavior
下载PDF
Pyrolysis Mechanism of a Cyclotriphosphazene-Based Flame-Retardant Epoxy Resin by ReaxFF Molecular Dynamics
6
作者 Jiang Shuaijun Meng Weifeng +3 位作者 Wan Yongqing Qin Weihua Liu Xiaoqing Lan Yanhua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期136-152,共17页
Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyc... Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyclotriphosphazene(HMPOP)incorporation on the initial pyrolysis of an EP at 500–3500 K were studied using the ReaxFF method.The pyrolysis fragments,initial reaction pathways,and main products were identified for the EP and EP/HMPOP composites.The activation energies were derived by fitting the weight percentage curves for solid species during the pyrolysis reactions and the obtained values were in good agreement with experimental data.The initial EP pyrolysis reactions included four major decomposition modes,which primarily involved the cleavage of C–O and C–N bonds.The main pyrolysis products were H_(2)O,CO,C_(2)H_(4),and CH_(2)O.HMPOP bonded with the oxygen-containing fragments to form larger molecular fragments and reduced the amounts of C_(0)–C_(4) products,especially that of the harmful gas CH_(2)O.Thus,HMPOP promoted the formation of carbon clusters and reduced the generation of combustible gases,ultimately decreasing the capacity for fire propagation. 展开更多
关键词 epoxy CYCLOTRIPHOSPHAZENE REAXFF PYROLYSIS flame retardancy
下载PDF
Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites
7
作者 Chunhua Liu Dongfang Zou +3 位作者 Qinqin Huang Shang Li Xia Zheng Xingong Li 《Journal of Renewable Materials》 EI 2023年第10期3613-3624,共12页
The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER tran... The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER transparent composite materials were prepared by lamination hot pressing process.The composite materials’color difference,transmittance,haze,density,water absorption,and mechanical properties were determined to assess the effects of NaClO_(2) treatment and the number of ramie fiber layers on the properties of the prepared composites.The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO_(2) treatment.With the increase of ramie fiber layers,the composites’whiteness,transmittance,and water absorption decreased while the haze increased.For material with three layers,the optical transmittance in the visible light region was 82%,and the haze was 96%,indicating the material has both high transmittance and high haze characteristics.The tensile strength increases with the increase of the number of layers,and the tensile strength of the composite with six layers is 243 MPa.This study broadens the scope of application of ramie fiber as a new option for home decoration materials. 展开更多
关键词 Ramie fiber water-based epoxy transparent composites TRANSMITTANCE HAZE tensile strength
下载PDF
Study on Camellia Oleifera Protein based Wood Adhesive by Epoxy Resin and Its Crosslinking Mechanism 被引量:5
8
作者 陈思成 LIANG Jiankun +4 位作者 ZHANG Bengang 吴志刚 雷洪 LI Lifen YANG Shoulu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第4期607-613,共7页
Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism... Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism was also discussed by using model compounds.The experimental results show that EPR can significantly improve the bonding performance of Camellia oleifera Abel.protein-based adhesive,and the maximum of which reaches 0.72 MPa satisfies the strength requirement of Type II plywood in GB/T 17657-2013.After alkali treatment,the protein can more easily crosslink with EPR at low curing temperature,and the adhesive has high degree of crystallinity of curing products,high degree of crosslinking reaction,and high bonding strength.The reaction mechanism of EPR-modified Camellia oleifera Abel.protein adhesive can be divided into resinification phase and curing phase. 展开更多
关键词 Camellia oleifera protein epoxy resin CROSSLINKING wood adhesive
原文传递
Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance 被引量:5
9
作者 Jie Xu Jiayao Yang +5 位作者 Hengxu Wang Peng Lin Xiaohuan Liu Jinjie Zhang Shenyuan Fu Yuxun Tang 《Journal of Renewable Materials》 SCIE 2019年第12期1333-1346,共14页
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranc... It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields. 展开更多
关键词 Solvent-free epoxy resins bio-based toughener bio-based curing agent mechanical performance thermal properties
下载PDF
Effect of Epoxy Resin on Mechanical Properties of Metakaolin based Geopolymer and Microscopic Analysis 被引量:3
10
作者 ZHANG Anyuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期431-434,共4页
By using NaOH and Na2SiO3 as the activator,the mechanical properties and shrinkage of the geopolymer after incorporation of 0%,10%,20%,and 30% epoxy resin were investigated.The mechanism of epoxy resin toughening meta... By using NaOH and Na2SiO3 as the activator,the mechanical properties and shrinkage of the geopolymer after incorporation of 0%,10%,20%,and 30% epoxy resin were investigated.The mechanism of epoxy resin toughening metakaolin based geopolymer was analyzed by X-ray diffraction,scanning electron microscopy and Fourier transform infrared spectroscopy.It was shown that with the increases of epoxy resin,the shrinkage performance was obviously improved and the flexural strength increased by 53.5%.The compressive strength of EGP10,EGP20,and EGP30 increased by 49.12%,57.04%,and 65.34% after curing for 28 days,respectively.There were five obvious vibration peaks of 811 cm^-1,1 000 cm^-1,1 050 cm^-1,1 590cm^-1,and 3 400 cm^-1 in the geopolymer and the undisturbed metakaolin.More geopolymer gels were formed in the material and the microstructure was more compact. 展开更多
关键词 metakaolin based geopolymer epoxy resin curing time mechanical properties SHRINKAGE
原文传递
Research on properties of hollow glass microspheres/epoxy resin composites applied in deep rock in-situ temperature-preserved coring 被引量:3
11
作者 Zhi-Qiang He Yang Yang +7 位作者 Bo Yu Jian-Ping Yang Xiang-Biao Jiang Bo Tian Man Wang Xi-Yuan Li Si-Qing Sun Hui Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第2期720-730,共11页
Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeabil... Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeability,which will lead to the distortion of the petroleum resources reserves assessment.Therefore,the hollow glass microspheres/epoxy resin(HGM/EP)composites were innovatively proposed as temperature preserved materials for in-situ temperature-preserved coring(ITP-Coring),and the physical,mechanical,and temperature preserved properties were evaluated.The results indicated that:As the HGM content increased,the density and mechanical properties of the composites gradually decreased,while the water absorption was deficient without hydrostatic pressure.For composites with 50 vol%HGM,when the hydrostatic pressure reached 60 MPa,the water absorption was above 30.19%,and the physical and mechanical properties of composites were weakened.When the hydrostatic pressure was lower than 40 MPa,the mechanical properties and thermal conductivity of composites were almost unchanged.Therefore,the composites with 50 vol%HGM can be used for ITPCoring operations in deep environments with the highest hydrostatic pressure of 40 MPa.Finally,to further understand the temperature preserved performance of composites in practical applications,the temperature preserved properties were measured.An unsteady-state heat transfer model was established based on the test results,then the theoretical change of the core temperature during the coring process was obtained.The above tests results can provide a research basis for deep rock in-situ temperature preserved corer and support accurate assessment of deep petroleum reserves. 展开更多
关键词 Deep rock in-situ temperature-preserved coring(ITP-Coring) Hollow glass microspheres/epoxy resin composites Hydrostatic pressure Unsteady-state heat transfer model
下载PDF
Developing polydopamine modified molybdenum disulfide/epoxy resin powder coatings with enhanced anticorrosion performance and wear resistance on magnesium lithium alloys 被引量:2
12
作者 Shibo Chen Changqing Yin +8 位作者 Yi Wang Shuang Yi Xiang Gao Xujuan Zhang Qiyu Liao Yuxin Zhang Xia Zhao Jinsong Rao Baorong Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2534-2545,共12页
Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive ... Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive application.There are limited approaches to exploit such anti-corrosion and mechanical properties of magnesium lithium alloys.Herein,the epoxy resin powder coating with polydopamine modified molybdenum disulfide(MoS_(2)@PDA-EP powder coating with 0,0.1,0.2,0.5,1.0 wt.%loading)was well prepared by melt extrusion to investigate its anticorrosion performance and wear resistance.The results revealed that the addition of MoS_(2)@PDA enhanced the adhesion strength between coatings and alloys,wear resistance and corrosion protection of the powder coatings.Among them,the optimum was obtained by 0.2 wt.%MoS_(2)@PDA-EP powder coating which could be attributed to well dispersion and efficient adhesion with coating matrix.To conclude,MoS_(2)@PDA-EP powder coating is meaningfully beneficial for the anticorrosive and wear performance improvement of magnesium lithium alloys. 展开更多
关键词 Magnesium lithium alloys epoxy resin powder coating Molybdenum disulfide POLYDOPAMINE Anticorrosion performance Wear resistance
下载PDF
Improving the surface insulation of epoxy resin by plasma etching 被引量:2
13
作者 冉慧娟 宋岩泽 +4 位作者 闫纪源 廉洪亮 康玉婵 彭程凯 谢庆 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期144-153,共10页
Epoxy resin(EP)tends to accumulate a large amount of charge on its surface when exposed to a high-voltage DC electric field,which leads to a reduction in its insulative performance and an increase in potential safety ... Epoxy resin(EP)tends to accumulate a large amount of charge on its surface when exposed to a high-voltage DC electric field,which leads to a reduction in its insulative performance and an increase in potential safety risks in power systems.To suppress charge accumulation,improve the flashover voltage of the EP,and reduce the risk of gas insulated switchgear(GIS)/gas insulated transmission line(GIL)failure,we used two plasma-etching methods,i.e.,atmospheric-pressure dielectric barrier discharge(DBD)and the atmospheric-pressure plasma jet(APPJ),to modify the surface of the EP.The surface morphology and electrical properties of the modified materials were explored as a function of time.The results show that after DBD treatment,the roughness of the sample increases by 103.9 nm,the conductivity increases by3.9×10^(-18)S,and the flashover voltage increases by 14.4%;after APPJ treatment,the roughness of the sample increases by 223.5 nm,the conductivity increases by 3.4×10^(-17)S,and the flashover voltage increases by 18%.This shows that both plasma-etching methods can improve the insulation properties of materials by improving the surface-charge characteristics.The two methods are compared with each other:the APPJ treatment method is better at improving the surface roughness and electrical properties of materials,and this flexible treatment method has greater potential in industrial applications. 展开更多
关键词 PLASMA epoxy resin physical etching surface morphology electrical properties
下载PDF
Flexible transparent wood enabled by epoxy resin and ethylene glycol diglycidyl ether 被引量:2
14
作者 Hangchuan Cai Zhiqi Wang +4 位作者 Di Xie Panpan Zhao Jianping Sun Daoyu Qin Fangchao Cheng 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1779-1787,共9页
Transparent wood has potential application in intelligent building,solar cell,electronics,and other advanced materials,while its single functionability hinders its further development.Flexible transparent wood(FTW)was... Transparent wood has potential application in intelligent building,solar cell,electronics,and other advanced materials,while its single functionability hinders its further development.Flexible transparent wood(FTW)was prepared by alkaline pretreatment and bleaching treat-ment of paulownia wood followed by impregnation of epoxy resin and ethylene glycol diglycidyl ether(EDGE).The eff ect of delignifi cation degree on the optical and mechani-cal properties of FTW was studied,and the infl uence of the epoxy/EDGE ratio on the fl exibility and mechanical proper-ties of FTW was also investigated.The results showed that higher delignifi cation degree resulted in higher transmit-tance of FTW.More EDGE addition led to better fl exibility of FTW,while overmuch addition of EDGE will reduce the mechanical properties.The optimal FTW sample resulted in a high transmittance of 89%and an ultrahigh haze value of 97%with outstanding fl exibility and excellent mechanical properties.The investigation of FTW broadens the research fi eld of transparent wood,and provides great possibility for its application in fl exible wearable devices and fl exible materials. 展开更多
关键词 Transparent wood epoxy resin Ethylene glycol diglycidyl ether FLEXIBILITY
下载PDF
Fracture of Aramid Fiber/Epoxy Resin Micro Composites 被引量:3
15
作者 WANG, X ZHANG, CX +1 位作者 JIN, SJ YU, YZ 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第4期260-264,共5页
Kevlar-49 fiber was modified through cold air plasma treatment and plasma grafting with acrylic monomers. Fracture of aramid fiber/epoxy resin micro composites has been studied by means of single fiber pull-out test. ... Kevlar-49 fiber was modified through cold air plasma treatment and plasma grafting with acrylic monomers. Fracture of aramid fiber/epoxy resin micro composites has been studied by means of single fiber pull-out test. Tow types of pull-out curves are correlated with the different failure modes. A polyacrylic acid-co-ethyl acrylate graft layer can improve the adhesion and protect the fiber from damage caused by interfacial stresses. 展开更多
关键词 FIGURE Fracture of Aramid Fiber/epoxy resin Micro Composites
下载PDF
Polymerization of Bisphenol A Epoxy Resin with Polyethylene glycol 被引量:2
16
作者 Zhen Zhong YANG De Lu ZHAo Mao XU(Polymer Physics Laboratory, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第8期725-728,共4页
The catalyst boron trifluoride etherate was used to catalyze the reaction of epoxy resin with polyethylene glycol (PEG), and the effect of the concentration of the catalyst on the reaction is studied.It is shown that ... The catalyst boron trifluoride etherate was used to catalyze the reaction of epoxy resin with polyethylene glycol (PEG), and the effect of the concentration of the catalyst on the reaction is studied.It is shown that there exist two competitive reactions:I, self polymerization of epoxy resin via chain growth and II, copolymerization of epoxy resin with PEG via step growth. At high concentration of the catalyst, reaction I dominates and reaction II is negligible. On the contrary, at low concentration of the catalyst, reaction II dominates and block copolymers are formed. In the intermediate case, the two reactions are comparable with the result that a gel structure is obtained. 展开更多
关键词 PEG Polymerization of Bisphenol A epoxy resin with Polyethylene glycol
下载PDF
Effect of plasma step gradient modification on surface electrical properties of epoxy resin 被引量:1
17
作者 闫纪源 梁贵书 +4 位作者 廉洪亮 宋岩泽 彭程凯 康玉婵 谢庆 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第6期97-105,共9页
In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the elec... In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the electrical performances measured.The obtained results show that compared with untreated and single treated samples,the samples treated by step gradient modification significantly improve the flashover performance.According to experiment and simulation,the mechanism explanations are summarized as follows.First,it is found that the step gradient conductivity can effectively optimize the electric field distribution of a needle-needle electrode.Then,step gradient modification suppresses the accumulation of surface charge at the triple junction and makes the charge distribution more uniform.Furthermore,it can accelerate the surface dissipation on a high electrical field region and control the dissipation rate on a low electrical field region.All these results can restrain surface discharge and increase the flashover voltage.The step gradient modification method proposed in this paper provides a new idea for improving the surface insulation performance. 展开更多
关键词 PLASMA epoxy resin step gradient modification flashover voltage surface charge
下载PDF
Mechanism Analysis of Stiffness Improvement by Waterborne Epoxy Resin Surface Sizing Agent 被引量:4
18
作者 Hui Xu ShuMei Wang +1 位作者 YuanYuan Li HongQi Dai 《Paper And Biomaterials》 2016年第1期44-50,共7页
Low-basis-weight paper lacks normal strength and stiffness. Waterborne epoxy resin could be employed with oxidized starch to improve paper stiffness through surface sizing. In this study,the mechanism of enhancing sti... Low-basis-weight paper lacks normal strength and stiffness. Waterborne epoxy resin could be employed with oxidized starch to improve paper stiffness through surface sizing. In this study,the mechanism of enhancing stiffness by adding waterborne epoxy resin was fully investigated. The results indicated that through surface sizing with epoxy resin,the paper thickness was preserved,whereas the elastic modulus increased significantly and the epoxy resin had positive impact on single fiber strength. A rigid resin layer and interpenetrating polymer network formed on the surface and in the inner layer of the paper,respectively. The formed resin layer and interpenetrating polymer network strongly supported the paper,leading to the improvement of the elastic modulus and stiffness. The stiffness improvement through surface sizing was mainly due to the formation of a fibrous composite layer and penetration of the sizing agent into the inner layers of the paper. The better the combination between fiber and sizing agent,the higher were the elastic modulus and the stiffness of the whole paper. 展开更多
关键词 surface sizing STIFFNESS mechanism analysis waterborne epoxy resin
下载PDF
Molecular investigation on the compatibility of epoxy resin with liquid oxygen 被引量:1
19
作者 Mingfa Ren Lei Wang +1 位作者 Tong Li Bingqing Wei 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第1期38-45,共8页
Conventional fiber reinforced plastics(FRPs)have compatibility issues with solid oxygen while used as a fuel tank,which might cause combustion and explosion.To study the compatibility of different epoxy resins with li... Conventional fiber reinforced plastics(FRPs)have compatibility issues with solid oxygen while used as a fuel tank,which might cause combustion and explosion.To study the compatibility of different epoxy resins with liquid oxygen,molecular dynamics was used to simulate the phase changes of cross-linked epoxy resins under the impact of solid oxygen.Three curing resin systems,which are bisphenol A epoxy resin(DGEBA),bisphenol F epoxy resin(DGEBF),and tetrahydrophthalate diglycidyl ester(epoxy resin 711),are modeled to investigate the rational material system for the application of fuel tanks in launching vehicles.The simulation results show that the order of solid oxygen compatibility of these epoxy resins is DGEBA>DGEBF>epoxy resin 711 at the same density of crosslinking.The selection of curing agent also has an impact on the compatibility,with the same epoxy,diaminodiphenyl methane(DDM)has more advanced performance comparing to diaminodiphenyl sulfone(DDS). 展开更多
关键词 Molecular dynamics REAXFF epoxy resin Oxygen compatibility
下载PDF
Influence of aliphatic epoxy monomer on the blowing-out effect in the flame retardant epoxy resins
20
作者 张文超 宋廷鲁 杨荣杰 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期418-428,共11页
An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-di... An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO)and octaphenyl silsesquioxane(OPS).The flame retarding properties of these EP composites were tested using the LOI and UL-94 procedures.The pyrolytic gases produced and the thermal stability of the EP composites with different flame retardants were detected by TGA-FTIR in air.The negative effect of YF878 was detected from the TTI,HRR,and p-HRR results after the cone calorimeter test.The char produced by the EP composites after the cone calorimeter test was investigated by FTIR.It is proposed that the aliphatic chain of the YF878 is easy to break down and produce combustible gases,so it does not easily form a crosslinked structure in the condensed phase.These results are very helpful for investigation of the conditions under which the blowing-out effect in epoxy resins can be caused by synergy of phosphorous and silicon. 展开更多
关键词 epoxy resin silicon PHOSPHORUS flame retardancy blowing-out effect
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部