Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed t...Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15μg/cm^2 carbon foil. The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.展开更多
A metabolic cycle can be viewed as a central core and its branches. The central core is here firstly considered as a pre-closed metabolic cycle (CMC), with a unique first substrate, but with no input or output of othe...A metabolic cycle can be viewed as a central core and its branches. The central core is here firstly considered as a pre-closed metabolic cycle (CMC), with a unique first substrate, but with no input or output of other components. By contrast, the metabolic cycles in nature are open metabolic cycles (OMC) with output and input of external substrates (through “metabolic branches”), modulating continuously the enzyme activities and the total concentration of their substrates thorough complex regulatory phenomena. In this work, the transition from a Closed to an Open metabolic cycle has been simulated by a consecutive entry and exit of two components through the catalytic action of two enzymes. It is known that after any alteration of the initial conditions, the cycles need a time to reach new equilibrium. We have measured the changes of transition time (T.T.) values in 81 models of CMC differing in Km or Vmax values. In general, the T.T. tends to be shorter in cycles with preponderant lower Km and higher Vmax values. Further, Mathematica refinement for the estimation of transition time from the data previously calculated can be obtained with the use of the command Interpolating Function.展开更多
A home-made inexpensive passive diffusion bag (PDB) sampler, prepared by filling deionized water in low-density polyethylene (LDPE) tubes, was evaluated for volatile organic compounds (VOC) sampling in groundwat...A home-made inexpensive passive diffusion bag (PDB) sampler, prepared by filling deionized water in low-density polyethylene (LDPE) tubes, was evaluated for volatile organic compounds (VOC) sampling in groundwater at industrial contamination sites. Impacts of environmentally relevant conditions on the sampling equilibration time and partitioning of VOCs between the sampler and the water sample were investigated. Sample salinity, agitation and temperature can influence the equilibration time, but generally sampling equilibration was obtained in 14 days under real field sampling of VOCs in groundwater. Both laboratory study and field testing in a contaminated site showed that the VOC concentrations in the developed sampler were equal to those in the water samples at equitibrium. Coupled with a purge and trap concentrator-gas chromatograph-mass spectrometer (P&T-GC-MS), the developed PDB sampler provided a low-cost sampling device for routine monitoring of VOCs in groundwater in wells, with LODs in the range of 2.9-10 μg/L. The proposed PDB was applied to determine VOCs in groundwater at an industrial contamination site, and the present results agreed well with those determined using conventional pump-and-sample monitoring. All the studied 13 VOCs were tested in the four wells in the industrial contamination sites, with their concentrations in the range of 12-73660 μg/L. In addition, while benzene and toluene were heavily contaminated up to a maximum concentration of 74000 μg/L and 6000 μg/L, respectively, 1,2,3-trichlorobenzene and bromobenzene had relatively low contamination levels (below 25 μg/L).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10405025)
文摘Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15μg/cm^2 carbon foil. The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.
文摘A metabolic cycle can be viewed as a central core and its branches. The central core is here firstly considered as a pre-closed metabolic cycle (CMC), with a unique first substrate, but with no input or output of other components. By contrast, the metabolic cycles in nature are open metabolic cycles (OMC) with output and input of external substrates (through “metabolic branches”), modulating continuously the enzyme activities and the total concentration of their substrates thorough complex regulatory phenomena. In this work, the transition from a Closed to an Open metabolic cycle has been simulated by a consecutive entry and exit of two components through the catalytic action of two enzymes. It is known that after any alteration of the initial conditions, the cycles need a time to reach new equilibrium. We have measured the changes of transition time (T.T.) values in 81 models of CMC differing in Km or Vmax values. In general, the T.T. tends to be shorter in cycles with preponderant lower Km and higher Vmax values. Further, Mathematica refinement for the estimation of transition time from the data previously calculated can be obtained with the use of the command Interpolating Function.
基金supported by the China National Special Research Fund for Non-Profit Sector of Environmental Protection(No.201009015)the National Science Fund for Distinguished Young Scholars(No.21025729)
文摘A home-made inexpensive passive diffusion bag (PDB) sampler, prepared by filling deionized water in low-density polyethylene (LDPE) tubes, was evaluated for volatile organic compounds (VOC) sampling in groundwater at industrial contamination sites. Impacts of environmentally relevant conditions on the sampling equilibration time and partitioning of VOCs between the sampler and the water sample were investigated. Sample salinity, agitation and temperature can influence the equilibration time, but generally sampling equilibration was obtained in 14 days under real field sampling of VOCs in groundwater. Both laboratory study and field testing in a contaminated site showed that the VOC concentrations in the developed sampler were equal to those in the water samples at equitibrium. Coupled with a purge and trap concentrator-gas chromatograph-mass spectrometer (P&T-GC-MS), the developed PDB sampler provided a low-cost sampling device for routine monitoring of VOCs in groundwater in wells, with LODs in the range of 2.9-10 μg/L. The proposed PDB was applied to determine VOCs in groundwater at an industrial contamination site, and the present results agreed well with those determined using conventional pump-and-sample monitoring. All the studied 13 VOCs were tested in the four wells in the industrial contamination sites, with their concentrations in the range of 12-73660 μg/L. In addition, while benzene and toluene were heavily contaminated up to a maximum concentration of 74000 μg/L and 6000 μg/L, respectively, 1,2,3-trichlorobenzene and bromobenzene had relatively low contamination levels (below 25 μg/L).