Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperat...Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperature fluidity of crude oil. In this work, molecular dynamics simulations were performed to investigate the effect of EVA on wax-hydrate coexistence system to evaluate the application potentiality of EVA to the flow assurance of deep-sea oil-gas-water multiphase flow system. Our simulation results reveal that wax molecules gradually stretched and stacked from random coiling to a directional and ordered crystalline state during the process of wax solidification. The strong affinity of polar vinyl acetate side chains of EVA to neighboring water molecules made the EVA molecule prefer being in a curly state,which disrupted the ordered crystallization of surrounding wax molecules and delayed the solidification rate of wax cluster. In addition, it is found that EVA cocrystallized with wax molecules to form eutectic when the wax was fully solidified. The simulation results of hydrate nucleation and growth show that the EVA molecule displayed a two-sided effect on gas adsorption of wax crystals, which was the key factor that affected the nucleation and growth of hydrates in the methane-water system. The nonpolar hydrocarbon backbone of EVA increased the diffusion rate of methane and water, allowing more methane to diffuse to the surface of wax crystals, reducing the methane concentration in aqueous solutions and inhibiting the hydrate formation. On the other hand, the nonpolar vinyl acetate chains had a repulsive effect on methane, which reduced the adsorption area of methane on the eutectic surface and decreased the adsorption threshold value of the wax crystal. The excluded methane molecules would continue dissociating in the aqueous phase and participating in the nucleation and growth process of hydrates.Therefore, the probability of hydrate formation would be increased. It was worth noting that the inhibition performance of EVA on hydrate formation mainly played a significant role in the system with small wax crystal, while its hydrate promotion effect played a dominant role in the system with lager wax crystal. In summary, EVA could significantly inhibit both of the wax and hydrate deposition for the waxgas-water multiphase system with low wax content. When the wax content in the system was high, the role of EVA was mainly played in the alleviation of wax crystallization rather than the gas hydrates. The results of the present work can contribute to a better understanding of EVA on wax deposition and hydrate formation, and provide theoretical support of the potential industrial applications of EVA.展开更多
Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber c...Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber contains ammonium polyphosphate (APP) as acid source, double pentaerythritol (D-PER) as carbon source and melamine (MN) as gas source. The effects of nano-filler sepiolite and boehmite on the fire-resistant property of EVM rubber based on IFR system were investigated. The test results show that the system with nano-filler of sepiolite B10 has the best fire-resistant property. The process of smoke emission and thermal decomposition, the element composition of char surface and the micro morphology of intumecent char layer of the EVM IFR system with nano-filler were also studied by NBS chamber, thermogravimetric (TG) analysis, X- ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).展开更多
Poly (vinyl chloride)/ethylene-vinyl acetate/montmorillonite (PVC/EVA/OMMT) composites were prepared by melt blending method. Two kinds of montmorillonites were organically modified by trimethyloctadecyl ammonium and ...Poly (vinyl chloride)/ethylene-vinyl acetate/montmorillonite (PVC/EVA/OMMT) composites were prepared by melt blending method. Two kinds of montmorillonites were organically modified by trimethyloctadecyl ammonium and dimethyl bis (hydrogenated tallow) ammonium, respectively. The morphology and tensile properties of the resultant composites were discussed in terms of the modifier type and OMMT content. The PVC/EVA/OMMT composites have intercalated structure, which is independent of the polarity of the modifiers, while the tensile properties show strong dependence on the modifier type. The OMMT modified by polar modifier gives higher tensile ductile and strength of PVC/EVA/OMMT composites.展开更多
The paper deals with the problem of material dispersion using supercritical fluid media. At the same time, emphasis is made on modifications(SAS, GAS, SEDS and ASES) of the supercritical fluid anti-solvent method of d...The paper deals with the problem of material dispersion using supercritical fluid media. At the same time, emphasis is made on modifications(SAS, GAS, SEDS and ASES) of the supercritical fluid anti-solvent method of dispersion. The results of SAS method implementation for dispersion of pure polycarbonate and polycarbonate doped with "CdSe/CdS-core/shell" quantum dots(carried out in the pressure range of 8.0-25.0 MPa at temperatures of 313.15 K and 358.15 K) are submitted. The range of the operating parameters has been established through the example of pure polycarbonate dispersion, which provides the production of nanoparticles with the size range of 10-100 nm. Encapsulation of Cd Se/Cd S quantum dots into polycarbonate using the SAS method has no effect on optical properties of the encapsulated quantum dots. The results of paracetamol dispersion using the SEDS method are presented. The effect of operating conditions of the paracetamol dispersion process on morphology of the obtained product is described. Co-dispersion of ethylene–vinyl acetate copolymers and low-density polyethylene mixtures by SEDS method has been carried out under pressures of 8.0-25.0 MPa at temperatures of 313 K, 323 K, and 333 K. The comparison of melting and crystallization between the resulting copolymer mixtures and mixtures with the same composition obtained by mixing in the liquid melt, has shown that implementation of SEDS results in an increase of crystallinity degree of the polymer mixtures.展开更多
基金financial support received from National Natural Science Foundation of China(22178378 and 22127812)"Tianchi Talent"Recruitment Program,Xinjiang Tianshan Innovation Team(2022TSYCTD0002)Xinjiang Uygur Region"One Case,One Policy"Strategic Talent Introduction Project(XQZX20240054)are gratefully acknowledged.
文摘Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperature fluidity of crude oil. In this work, molecular dynamics simulations were performed to investigate the effect of EVA on wax-hydrate coexistence system to evaluate the application potentiality of EVA to the flow assurance of deep-sea oil-gas-water multiphase flow system. Our simulation results reveal that wax molecules gradually stretched and stacked from random coiling to a directional and ordered crystalline state during the process of wax solidification. The strong affinity of polar vinyl acetate side chains of EVA to neighboring water molecules made the EVA molecule prefer being in a curly state,which disrupted the ordered crystallization of surrounding wax molecules and delayed the solidification rate of wax cluster. In addition, it is found that EVA cocrystallized with wax molecules to form eutectic when the wax was fully solidified. The simulation results of hydrate nucleation and growth show that the EVA molecule displayed a two-sided effect on gas adsorption of wax crystals, which was the key factor that affected the nucleation and growth of hydrates in the methane-water system. The nonpolar hydrocarbon backbone of EVA increased the diffusion rate of methane and water, allowing more methane to diffuse to the surface of wax crystals, reducing the methane concentration in aqueous solutions and inhibiting the hydrate formation. On the other hand, the nonpolar vinyl acetate chains had a repulsive effect on methane, which reduced the adsorption area of methane on the eutectic surface and decreased the adsorption threshold value of the wax crystal. The excluded methane molecules would continue dissociating in the aqueous phase and participating in the nucleation and growth process of hydrates.Therefore, the probability of hydrate formation would be increased. It was worth noting that the inhibition performance of EVA on hydrate formation mainly played a significant role in the system with small wax crystal, while its hydrate promotion effect played a dominant role in the system with lager wax crystal. In summary, EVA could significantly inhibit both of the wax and hydrate deposition for the waxgas-water multiphase system with low wax content. When the wax content in the system was high, the role of EVA was mainly played in the alleviation of wax crystallization rather than the gas hydrates. The results of the present work can contribute to a better understanding of EVA on wax deposition and hydrate formation, and provide theoretical support of the potential industrial applications of EVA.
基金Sponsored by Project in National Key Technology R&D Program(2006BAE03B05-2)
文摘Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber contains ammonium polyphosphate (APP) as acid source, double pentaerythritol (D-PER) as carbon source and melamine (MN) as gas source. The effects of nano-filler sepiolite and boehmite on the fire-resistant property of EVM rubber based on IFR system were investigated. The test results show that the system with nano-filler of sepiolite B10 has the best fire-resistant property. The process of smoke emission and thermal decomposition, the element composition of char surface and the micro morphology of intumecent char layer of the EVM IFR system with nano-filler were also studied by NBS chamber, thermogravimetric (TG) analysis, X- ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).
文摘Poly (vinyl chloride)/ethylene-vinyl acetate/montmorillonite (PVC/EVA/OMMT) composites were prepared by melt blending method. Two kinds of montmorillonites were organically modified by trimethyloctadecyl ammonium and dimethyl bis (hydrogenated tallow) ammonium, respectively. The morphology and tensile properties of the resultant composites were discussed in terms of the modifier type and OMMT content. The PVC/EVA/OMMT composites have intercalated structure, which is independent of the polarity of the modifiers, while the tensile properties show strong dependence on the modifier type. The OMMT modified by polar modifier gives higher tensile ductile and strength of PVC/EVA/OMMT composites.
基金supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan within the framework of Research Project No. 18-48-160013
文摘The paper deals with the problem of material dispersion using supercritical fluid media. At the same time, emphasis is made on modifications(SAS, GAS, SEDS and ASES) of the supercritical fluid anti-solvent method of dispersion. The results of SAS method implementation for dispersion of pure polycarbonate and polycarbonate doped with "CdSe/CdS-core/shell" quantum dots(carried out in the pressure range of 8.0-25.0 MPa at temperatures of 313.15 K and 358.15 K) are submitted. The range of the operating parameters has been established through the example of pure polycarbonate dispersion, which provides the production of nanoparticles with the size range of 10-100 nm. Encapsulation of Cd Se/Cd S quantum dots into polycarbonate using the SAS method has no effect on optical properties of the encapsulated quantum dots. The results of paracetamol dispersion using the SEDS method are presented. The effect of operating conditions of the paracetamol dispersion process on morphology of the obtained product is described. Co-dispersion of ethylene–vinyl acetate copolymers and low-density polyethylene mixtures by SEDS method has been carried out under pressures of 8.0-25.0 MPa at temperatures of 313 K, 323 K, and 333 K. The comparison of melting and crystallization between the resulting copolymer mixtures and mixtures with the same composition obtained by mixing in the liquid melt, has shown that implementation of SEDS results in an increase of crystallinity degree of the polymer mixtures.