Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forest...Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.展开更多
Background: Trunk volume(Vt) is an essential parameter for estimating forest stand volume, biomass, and carbon sequestration potential. As the dominant tree species in desert riparian forests, Euphrates poplar(Populus...Background: Trunk volume(Vt) is an essential parameter for estimating forest stand volume, biomass, and carbon sequestration potential. As the dominant tree species in desert riparian forests, Euphrates poplar(Populus euphratica) has a high proportion of irregularly shaped tree trunks along the Tarim River, NW China, where the habitat is very fragile owing to long-term water stress. This causes uncertainty in estimation accuracy as well as technical challenges for forest surveys. Our study aimed to acquire P. euphratica Vtusing terrestrial laser scanning(TLS) and to establish a species-specific Vtprediction model.Methods: A total of 240 individual trees were measured by TLS multiple-station in 12 sampling plots in three sections along the lower reaches of the Tarim River. Vtwas calculated by a definite integration method using trunk diameters(Di) at every 0.1-m tree height obtained from TLS, and all data were split randomly into two sets:70% of data were used to estimate the model parameter calibration, and the remaining 30% were used for model validation. Sixteen widely used candidate tree Vtestimation models were fitted to the TLS-measured Vtand tree structural parameter data, including tree height(H), diameter at breast height(DBH), and basal diameter(BD). All model performances were evaluated and compared by the statistical parameters of determination coefficient(R^(2)),root mean square error(RMSE), Bayesian information criterion(BIC), mean prediction error(ME), mean absolute error(MAE), and modeling efficiency(EF), and accordingly the best model was selected.Results: TLS point cloud reflection intensity(RI) has advantageous in the extraction of data from irregular tree trunk structures. The P. euphratica tree Vtvalues showed obvious differences at the same tree height(H). There was no significant correlation between Vtand H(R^(2)=0.11, P < 0.01), which reflected the irregularity of P. euphratica trunk shape in the study area. Among all the models, model(14): Vt=0.909DBH1.184H0.487BD0.836(R^(2)=0.97, RMSE=0.14) had the best prediction capability for irregularly shaped Vtwith the highest R^(2), BIC(-37.96), and EF(0.96), and produced a smaller ME(0.006) and MAE(1.177) compared to other models. The prediction accuracy was 93.18%.Conclusions: TLS point cloud RI has a potential for nondestructively measuring irregularly shaped trunk structures of P. euphratica and developed Vtprediction models. The multivariate models more effectively predicted Vtfor irregularly shaped trees compared to one-way and general volume models.展开更多
We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) ...We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance.展开更多
The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “o...The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “onozuka” R\|10, 0\^01% pectolyase Y\|23,0\^15% macerozyme R\|10 and 0\^1% hemicellulase at 25℃. Outward and inward single channels in plasma membrane were observed using cell\|attached recording of patch\|clamp technique. In this study, single channel records showed that more than one species of channel were obtained. These attempts in protoplast isolation and ion channel recording offers the opportunity to characterize cellular mechanisms of salt tolerance in tree species.展开更多
基金funded by the Talents ans its Youth Project of Xinjiang Production and Construction Corps(38000020924,380000358).
文摘Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.
基金supported by the National Natural Science Foundation of China (Nos. 32260285, 31860134, 32160367, 31800469)the Third Xinjiang Scientific Expedition and Research Program (Nos2022xjkk0301, 2021xjkk14002)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2022445)the Tianchi Doctor Program of Xinjiang Autonomous Region (No.Y970000362)。
文摘Background: Trunk volume(Vt) is an essential parameter for estimating forest stand volume, biomass, and carbon sequestration potential. As the dominant tree species in desert riparian forests, Euphrates poplar(Populus euphratica) has a high proportion of irregularly shaped tree trunks along the Tarim River, NW China, where the habitat is very fragile owing to long-term water stress. This causes uncertainty in estimation accuracy as well as technical challenges for forest surveys. Our study aimed to acquire P. euphratica Vtusing terrestrial laser scanning(TLS) and to establish a species-specific Vtprediction model.Methods: A total of 240 individual trees were measured by TLS multiple-station in 12 sampling plots in three sections along the lower reaches of the Tarim River. Vtwas calculated by a definite integration method using trunk diameters(Di) at every 0.1-m tree height obtained from TLS, and all data were split randomly into two sets:70% of data were used to estimate the model parameter calibration, and the remaining 30% were used for model validation. Sixteen widely used candidate tree Vtestimation models were fitted to the TLS-measured Vtand tree structural parameter data, including tree height(H), diameter at breast height(DBH), and basal diameter(BD). All model performances were evaluated and compared by the statistical parameters of determination coefficient(R^(2)),root mean square error(RMSE), Bayesian information criterion(BIC), mean prediction error(ME), mean absolute error(MAE), and modeling efficiency(EF), and accordingly the best model was selected.Results: TLS point cloud reflection intensity(RI) has advantageous in the extraction of data from irregular tree trunk structures. The P. euphratica tree Vtvalues showed obvious differences at the same tree height(H). There was no significant correlation between Vtand H(R^(2)=0.11, P < 0.01), which reflected the irregularity of P. euphratica trunk shape in the study area. Among all the models, model(14): Vt=0.909DBH1.184H0.487BD0.836(R^(2)=0.97, RMSE=0.14) had the best prediction capability for irregularly shaped Vtwith the highest R^(2), BIC(-37.96), and EF(0.96), and produced a smaller ME(0.006) and MAE(1.177) compared to other models. The prediction accuracy was 93.18%.Conclusions: TLS point cloud RI has a potential for nondestructively measuring irregularly shaped trunk structures of P. euphratica and developed Vtprediction models. The multivariate models more effectively predicted Vtfor irregularly shaped trees compared to one-way and general volume models.
文摘We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance.
文摘The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “onozuka” R\|10, 0\^01% pectolyase Y\|23,0\^15% macerozyme R\|10 and 0\^1% hemicellulase at 25℃. Outward and inward single channels in plasma membrane were observed using cell\|attached recording of patch\|clamp technique. In this study, single channel records showed that more than one species of channel were obtained. These attempts in protoplast isolation and ion channel recording offers the opportunity to characterize cellular mechanisms of salt tolerance in tree species.