This paper conducts the analysis on the dissemination mechanism and guiding tactics of public opinion in catastrophic event network. Opinion evolution mechanism can be roughly divided into two classes. One is the beli...This paper conducts the analysis on the dissemination mechanism and guiding tactics of public opinion in catastrophic event network. Opinion evolution mechanism can be roughly divided into two classes. One is the belief of people based on their neighbors, on the basis of the public opinion is in the social network of acquaintances. Such networks are mostly using cellular automata model for data simulation, the results of numerical simulation are speci? c to stabilize near the critical value show that the system will reach a critical stable state. The network information collection is the source of network public opinion monitoring its breadth and depth determine the monitoring results for the clear theme of public opinion information collection. Under this basis, this paper proposes the novel idea of making the dissemination mechanism easier. The proposed idea is novel and necessary, the effectiveness is proved via the theoretical analysis.展开更多
It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component anal...It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component analysis network(PCAnet)and kernel principal component analysis(kPCA),is proposed to address this problem.Using surveillance video sequences of different scenes as raw data,the PCAnet is trained to extract high-level semantics of the crowd’s situation.Next,kPCA,a one-class classifier,is trained to identify anomalies within the scene.In contrast to some prevailing deep learning methods,this framework is completely self-supervised because it utilizes only video sequences of a normal situation.Experiments in global and local abnormal event detection are carried out on Monitoring Human Activity dataset from University of Minnesota(UMN dataset)and Anomaly Detection dataset from University of California,San Diego(UCSD dataset),and competitive results that yield a better equal error rate(EER)and area under curve(AUC)than other state-of-the-art methods are observed.Furthermore,by adding a local response normalization(LRN)layer,we propose an improvement to the original AED-Net.The results demonstrate that this proposed version performs better by promoting the framework’s generalization capacity.展开更多
This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By ...This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.展开更多
In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the ...In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the home and simultaneously deliver them to a sink node for sound event detection. The proposed approach is mainly composed of three modules, including signal estimation, reliable sensor channel selection, and sound event detection. During signal estimation, lost packets are recovered to improve the signal quality. Next, reliable channels are selected using a multi-channel cross-correlation coefficient to improve the computational efficiency for distant sound event detection without sacrificing performance. Finally, the signals of the selected two channels are used for environmental sound event detection based on bidirectional gated recurrent neural networks using two-channel audio features. Experiments show that the proposed approach achieves superior performances compared to the baseline.展开更多
Event correlation is one key technique in network fault management. For the event sample acquisition problem in event correlation, a novel approach is proposed to collect the samples by constructing network simulation...Event correlation is one key technique in network fault management. For the event sample acquisition problem in event correlation, a novel approach is proposed to collect the samples by constructing network simulation platform. The platform designed can set kinds of network faults according to user's demand and generate a lot of network fault events, which will benefit the research on efficient event correlation techniques.展开更多
The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e ar...The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e artificial neural networks (ANN) is proposed for simula ting the runoff in storm events. The study uses the data from a coa stal forest catchment located in Seto Inland Sea, Japan. This article studies the accuracy of the short-term rainfall forecast obta ined by ANN time-series analysis techniques and using antecedent rainfa ll depths and stream flow as the input information. The verification results from the proposed model indicate that the approach of ANN rai nfall-runoff model presented in this paper shows a reasonable agreement in rainfall-runoff modeling with high accuracy.展开更多
1 IntroductionNowadays in China, there are more than six hundred million netizens [1]. On April 11, 2015, the nmnbet of simultaneous online users of the Chinese instant message application QQ reached two hundred milli...1 IntroductionNowadays in China, there are more than six hundred million netizens [1]. On April 11, 2015, the nmnbet of simultaneous online users of the Chinese instant message application QQ reached two hundred million [2]. The fast growth ol the lnternet pusnes me rapid development of information technology (IT) and communication technology (CT). Many traditional IT service and CT equipment providers are facing the fusion of IT and CT in the age of digital transformation, and heading toward ICT enterprises. Large global ICT enterprises, such as Apple, Google, Microsoft, Amazon, Verizon, and AT&T, have been contributing to the performance improvement of IT service and CT equipment.展开更多
The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model...The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input展开更多
Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment n...Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.展开更多
文摘This paper conducts the analysis on the dissemination mechanism and guiding tactics of public opinion in catastrophic event network. Opinion evolution mechanism can be roughly divided into two classes. One is the belief of people based on their neighbors, on the basis of the public opinion is in the social network of acquaintances. Such networks are mostly using cellular automata model for data simulation, the results of numerical simulation are speci? c to stabilize near the critical value show that the system will reach a critical stable state. The network information collection is the source of network public opinion monitoring its breadth and depth determine the monitoring results for the clear theme of public opinion information collection. Under this basis, this paper proposes the novel idea of making the dissemination mechanism easier. The proposed idea is novel and necessary, the effectiveness is proved via the theoretical analysis.
基金This work is partially supported by the National Key Research and Development Program of China(2016YFE0204200)the National Natural Science Foundation of China(61503017)+3 种基金the Fundamental Research Funds for the Central Universities(YWF-18-BJ-J-221)the Aeronautical Science Foundation of China(2016ZC51022)the Platform CAPSEC(capteurs pour la sécurité)funded by Région Champagne-ArdenneFEDER(fonds européen de développement régional).
文摘It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component analysis network(PCAnet)and kernel principal component analysis(kPCA),is proposed to address this problem.Using surveillance video sequences of different scenes as raw data,the PCAnet is trained to extract high-level semantics of the crowd’s situation.Next,kPCA,a one-class classifier,is trained to identify anomalies within the scene.In contrast to some prevailing deep learning methods,this framework is completely self-supervised because it utilizes only video sequences of a normal situation.Experiments in global and local abnormal event detection are carried out on Monitoring Human Activity dataset from University of Minnesota(UMN dataset)and Anomaly Detection dataset from University of California,San Diego(UCSD dataset),and competitive results that yield a better equal error rate(EER)and area under curve(AUC)than other state-of-the-art methods are observed.Furthermore,by adding a local response normalization(LRN)layer,we propose an improvement to the original AED-Net.The results demonstrate that this proposed version performs better by promoting the framework’s generalization capacity.
基金Project supported by the National Natural Science Foundation of China(Grant No.11202084)
文摘This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF2015R1D1A1A01059804)the MSIP (Ministry of Science,ICT and Future Planning),Korea,under the ITRC(Information Technology Research Center) support program (IITP-2016-R2718-16-0011) supervised by the IITP(Institute for Information & communications Technology Promotion)the present Research has been conducted by the Research Grant of Kwangwoon University in 2017
文摘In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the home and simultaneously deliver them to a sink node for sound event detection. The proposed approach is mainly composed of three modules, including signal estimation, reliable sensor channel selection, and sound event detection. During signal estimation, lost packets are recovered to improve the signal quality. Next, reliable channels are selected using a multi-channel cross-correlation coefficient to improve the computational efficiency for distant sound event detection without sacrificing performance. Finally, the signals of the selected two channels are used for environmental sound event detection based on bidirectional gated recurrent neural networks using two-channel audio features. Experiments show that the proposed approach achieves superior performances compared to the baseline.
基金the National Natural Science Foundation of China(69983 0 0 5 )
文摘Event correlation is one key technique in network fault management. For the event sample acquisition problem in event correlation, a novel approach is proposed to collect the samples by constructing network simulation platform. The platform designed can set kinds of network faults according to user's demand and generate a lot of network fault events, which will benefit the research on efficient event correlation techniques.
文摘The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e artificial neural networks (ANN) is proposed for simula ting the runoff in storm events. The study uses the data from a coa stal forest catchment located in Seto Inland Sea, Japan. This article studies the accuracy of the short-term rainfall forecast obta ined by ANN time-series analysis techniques and using antecedent rainfa ll depths and stream flow as the input information. The verification results from the proposed model indicate that the approach of ANN rai nfall-runoff model presented in this paper shows a reasonable agreement in rainfall-runoff modeling with high accuracy.
基金supported in part by Ministry of Education/China Mobile joint research grant under Project No.5-10Nanjing University of Posts and Telecommunications under Grants No.NY214135 and NY215045
文摘1 IntroductionNowadays in China, there are more than six hundred million netizens [1]. On April 11, 2015, the nmnbet of simultaneous online users of the Chinese instant message application QQ reached two hundred million [2]. The fast growth ol the lnternet pusnes me rapid development of information technology (IT) and communication technology (CT). Many traditional IT service and CT equipment providers are facing the fusion of IT and CT in the age of digital transformation, and heading toward ICT enterprises. Large global ICT enterprises, such as Apple, Google, Microsoft, Amazon, Verizon, and AT&T, have been contributing to the performance improvement of IT service and CT equipment.
文摘The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input
基金supported by the National Science Foundation for Outstanding Young Scientists (60425310)the Science Foundation for Post-doctoral Scientists of Central South University (2008)
文摘Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.