This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and eve...Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.展开更多
Based on the primitive equations of the atmosphere,we study the effects of external forcing. dissipation and nonlinearity on the solutions of stationary motion and non-stationary motion.The results show that the asymp...Based on the primitive equations of the atmosphere,we study the effects of external forcing. dissipation and nonlinearity on the solutions of stationary motion and non-stationary motion.The results show that the asymptotic behavior of solutions of the forced dissipative nonlinear system is essentially different from that of the adiabatic non-dissipative system,the adiabatic dissipative system,the diabatic non-dissipative system and the diabatic dissipative linear system,and that the joint action of external forcing,dissipation and nonlinearity is the source of multiple equilibria. From this we can conclude that the important actions of diabatic heating and dissipation must be considered in the models of the long-term weather and the climate.展开更多
Response of the East Asian summer monsoon(EASM) rainfall to external forcing(insolation,volcanic aerosol,and greenhouse gases) is investigated by analysis of a millennium simulation with the coupled climate model ...Response of the East Asian summer monsoon(EASM) rainfall to external forcing(insolation,volcanic aerosol,and greenhouse gases) is investigated by analysis of a millennium simulation with the coupled climate model ECHO-G.The model reproduces reasonably realistic present-day EASM climatology.The simulated precipitation variation in East Asia over the last millennium compares favorably with the observed and proxy data.It is found that the features and sensitivity of the forced response depend on latitude.On the centennial-millennial time scale(CMTS),the extratropical precipitation closely follows the variation of the effective radiative forcing(insolation plus radiative effects of volcanic aerosols).The subtropical precipitation is less sensitive but the differences of this variable between the Medieval Warm Period(MWP) and Little Ice Age(LIA) remain significant.The tropical rainfall is insensitive to the external forcing.It is also found that the precipitation variations in the extratropics and subtropics are in phase on the CMTS,while they are anti-correlated on the interannual time scale.The intertropical convergence zone(ITCZ) and subtropical precipitation are anti-correlated on the CMTS,so are they on the interannual time scale.These findings suggest that the proxy data in the extratropical East Asia more sensitively reflect the EASM variations,and this has important implications on interpretation of paleo-proxy records.展开更多
This paper investigates the generation of complex bursting patterns in Van der Pol system with two slowly changing external forcings. Complex bursting patterns, including complex periodic bursting and chaotic bursting...This paper investigates the generation of complex bursting patterns in Van der Pol system with two slowly changing external forcings. Complex bursting patterns, including complex periodic bursting and chaotic bursting, are presented for the cases when the two frequencies are commensurate and incommensurate. These complex bursting patterns are novel and have not been reported in previous work. Based on the fast-slow dynamics, the evolution processes of the slow forcing are presented to reveal the dynamical mechanisms undedying the appearance of these complex bursting patterns. With the change of ampli- tudes and frequencies, the slow forcing may visit the spiking and rest areas in different ways, which leads to the generation of different complex bursting patterns.展开更多
The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices...The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices, designed in-house, to construct standardized ventral and dorsal spinal cord injury animal models of 6 g and 17 g falling from a height of 2, 4, and 10 cm, and 15, 30 or 50 g transversal compression on the spinal cord. The results showed that gradual increases in the degree of histopathological injury led to decreased Tarlov and Basso, Beattie and Bresnahan scores for the behavioral test, and increased Ashworth scores for the hind limb. Furthermore, there was a gradual decline in the slope test in the rats with dorsal spinal cord injury that correlated to increases in the falling substance weight or falling height. Similar alterations were observed in the ventral spinal cord injured rats, proportional to the increase in compression weight. Our experimental findings indicate that the standardized experimental rat models of dorsal and ventral spinal cord injury are stable, reliable and reproducible.展开更多
This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of e...This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.展开更多
Almost all climate time series have some degree of nonstationarity due to external forces of the observed system. Therefore, these external forces should be taken into account when reconstructing the climate dy- namic...Almost all climate time series have some degree of nonstationarity due to external forces of the observed system. Therefore, these external forces should be taken into account when reconstructing the climate dy- namics. This paper presents a novel technique in predicting nonstationary time series. The main difference of this new technique from some previous methods is that it incorporates the driving forces in the pre- diction model. To appraise its effectiveness, three prediction experiments were carried out using the data generated from some known classical dynamical models and a climate model with multiple external forces. Experimental results indicate that this technique is able to improve the prediction skill effectively.展开更多
In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, s...In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented.展开更多
Evolution of spatial distribution of charged particulates under the action of an external force is investigated. It is found that starting from a homogeneous Maxwellian distribution of particulates, clusters can form ...Evolution of spatial distribution of charged particulates under the action of an external force is investigated. It is found that starting from a homogeneous Maxwellian distribution of particulates, clusters can form and aggregate. The evolution process, as well as the asymptotic number and configuration of the clusters formed, depends strongly on the strength of the external force. The particulates in most of the final clusters are in the crystal state, as can also be deduced from the corresponding velocity and auto-correlation functions.展开更多
Accurate quantification of external force is the key to improve the high-precision hemming of autobody closure panels.However,the mechanism of external force on forming quality of complex contour sheet metal with adhe...Accurate quantification of external force is the key to improve the high-precision hemming of autobody closure panels.However,the mechanism of external force on forming quality of complex contour sheet metal with adhesive is not clear subjected to geometric curvature and materials.In the present study,taking the curved edge aluminum sheet as the research object,SPH(smooth particle hydrodynamics)is introduced to simulate the viscous adhesive,and the SPH-FEM(Finite element method)coupling model of adhesive and panels considering the viscosity-pressure effect is established.The numerical simulation of the roller hemming process is carried out,then the validity and reliability of the proposed method are verified by measuring the external force in real time using triaxial force sensor.The multi-step forming process and the effect of external force on the roll in/out,surface wave and plastic strain of aluminum alloy sheet under the viscosity-pressure effect are studied,and the relationship between process parameters and external force is discussed.Results show that the coupling SPH-FEM model can well reflect the hemming process of curved edge structure.The normal force is about 2–3 times of the tangential force in the pre and final hemming process.Compared with the case without adhesive,the surface wave of flange part of the hemming with adhesive is slightly larger.The normal force and the tangential force increase about 90 N and 30 N respectively,when the height increases by 1 mm.It provides an important basis for the accurate control of hemming trajectory and the improvement of manufacturing quality of autobody closure panels.展开更多
According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explor...According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.展开更多
Evolution of the charged grains in a two-dimensional dusty plasma under a spatially harmonic external force,in particular,their long-time behaviors after the force has been withdrawn,is studied by using molecular dyna...Evolution of the charged grains in a two-dimensional dusty plasma under a spatially harmonic external force,in particular,their long-time behaviors after the force has been withdrawn,is studied by using molecular dynamics simulation.Under an external force and a grain–grain interaction force,initially homogeneously distributed grains can reach a quasistationary state in the form of a disk crystal.After the external force is withdrawn,the disk moves initially with its size and shape nearly unchanged until it rapidly stops moving,and eventually the disk grain rotates like a vortex.The time needed to reach the final state increases with the strength of the initial external force increasing.展开更多
We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the...We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the kink moves in the opposite direction of the external DC force, the kink will be accelerated and the potential of the FK chain in the external force field is transformed to be the kinetic energy of the kink. If the kink reaches the boundary of the FK chain, the kink will be bounced back and moves in the opposite direction, then the kink will be decelerated gradually and the kinetic energy of the kink & transformed to be the potential of the FK chain in the external force field. If the speed of the kink reaches zero, the kink will move in the opposite direction again driven by the external DC force, and a new oscillating cycle begins. Simulation result demonstrates exactly the transformation between the kinetic energy of the kink and the potential of the FK chain in the external force field. The interesting energy exchange is induced by the special topology of kinks, and other localized modes, such as breathers and envelope solitons, have no the interesting phenomenon.展开更多
The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature g...The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.展开更多
In this paper, the Cauchy problem for the inelastic Boltzmann equation with external force is considered in the case of initial data with infinite energy. More precisely, under the assumptions on the bicharacteristic ...In this paper, the Cauchy problem for the inelastic Boltzmann equation with external force is considered in the case of initial data with infinite energy. More precisely, under the assumptions on the bicharacteristic generated by external force, we prove the global existence of solution for small initial data compared to the local Maxwellian exp(-p|x - v|^2), which has infinite mass and energy.展开更多
By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition bound...By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.展开更多
The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the...The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.展开更多
A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses t...A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the ant hropogenic- forcing-dominant period.展开更多
The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model ...The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model HadGEM1, which was developed by the Met Office Hadley Centre for Climate Research. The results indicate that HadGEM1 performs well in simulating the observed decreasing trend of global land monsoon precipitation over the past 50 years. This trend mainly occurred in the Northern Hemisphere and is significantly different from the trend of natural variability due to ocean-atmosphere-land interactions. The coherence between the simulation and the observations indicates that the specified external forcing agents, including GHGs and aerosols as well as solar variability and ozone, are important factors that have affected the decreasing trend of global land monsoon precipitation in the past 50 years.展开更多
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
文摘Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.
基金This work was supported by the State Key Research Project on Dynamics and Predictive Theory of the Climate
文摘Based on the primitive equations of the atmosphere,we study the effects of external forcing. dissipation and nonlinearity on the solutions of stationary motion and non-stationary motion.The results show that the asymptotic behavior of solutions of the forced dissipative nonlinear system is essentially different from that of the adiabatic non-dissipative system,the adiabatic dissipative system,the diabatic non-dissipative system and the diabatic dissipative linear system,and that the joint action of external forcing,dissipation and nonlinearity is the source of multiple equilibria. From this we can conclude that the important actions of diabatic heating and dissipation must be considered in the models of the long-term weather and the climate.
基金Supported by the National Basic Research Program of China under Grant Nos.2010CB950102,2010CB833404,and 2011CB403301the Innovation Project of Chinese Academy of Sciences under Grant Nos.KZCX2-YW-337 and NIGLAS2010XK02the National Natural Science Foundation of China under Grant Nos.40871007,40890054,and 40672210
文摘Response of the East Asian summer monsoon(EASM) rainfall to external forcing(insolation,volcanic aerosol,and greenhouse gases) is investigated by analysis of a millennium simulation with the coupled climate model ECHO-G.The model reproduces reasonably realistic present-day EASM climatology.The simulated precipitation variation in East Asia over the last millennium compares favorably with the observed and proxy data.It is found that the features and sensitivity of the forced response depend on latitude.On the centennial-millennial time scale(CMTS),the extratropical precipitation closely follows the variation of the effective radiative forcing(insolation plus radiative effects of volcanic aerosols).The subtropical precipitation is less sensitive but the differences of this variable between the Medieval Warm Period(MWP) and Little Ice Age(LIA) remain significant.The tropical rainfall is insensitive to the external forcing.It is also found that the precipitation variations in the extratropics and subtropics are in phase on the CMTS,while they are anti-correlated on the interannual time scale.The intertropical convergence zone(ITCZ) and subtropical precipitation are anti-correlated on the CMTS,so are they on the interannual time scale.These findings suggest that the proxy data in the extratropical East Asia more sensitively reflect the EASM variations,and this has important implications on interpretation of paleo-proxy records.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872080, 20976075, 10972091 and 11102076)the Research Foundation for Advanced Talents of Jiangsu University (Grant No. 11JDG075)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (Grant No. 10KJD110006)
文摘This paper investigates the generation of complex bursting patterns in Van der Pol system with two slowly changing external forcings. Complex bursting patterns, including complex periodic bursting and chaotic bursting, are presented for the cases when the two frequencies are commensurate and incommensurate. These complex bursting patterns are novel and have not been reported in previous work. Based on the fast-slow dynamics, the evolution processes of the slow forcing are presented to reveal the dynamical mechanisms undedying the appearance of these complex bursting patterns. With the change of ampli- tudes and frequencies, the slow forcing may visit the spiking and rest areas in different ways, which leads to the generation of different complex bursting patterns.
基金the National Natural Science Foundation of China for Youths, No.30901483the Natural Science Foundation of Shanxi Province for Youths,No. 2009021041-3Projects of Patent Promoteand Implementation of Shanxi Province, No.111009
文摘The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices, designed in-house, to construct standardized ventral and dorsal spinal cord injury animal models of 6 g and 17 g falling from a height of 2, 4, and 10 cm, and 15, 30 or 50 g transversal compression on the spinal cord. The results showed that gradual increases in the degree of histopathological injury led to decreased Tarlov and Basso, Beattie and Bresnahan scores for the behavioral test, and increased Ashworth scores for the hind limb. Furthermore, there was a gradual decline in the slope test in the rats with dorsal spinal cord injury that correlated to increases in the falling substance weight or falling height. Similar alterations were observed in the ventral spinal cord injured rats, proportional to the increase in compression weight. Our experimental findings indicate that the standardized experimental rat models of dorsal and ventral spinal cord injury are stable, reliable and reproducible.
基金Sponsored by the NSFC (10901121,10826091 and 10771139)NSF for Postdoctors of China (20090460952)+2 种基金NSF of Zhejiang Province (Y6080077)NSF of Wenzhou University (2008YYLQ01)by the Zhejiang Youth Teacher Training Project and Wenzhou 551 Project
文摘This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.
基金supported by the National Natural Science Foundation of China under Grant Nos.40890052,41075061,and 41275087
文摘Almost all climate time series have some degree of nonstationarity due to external forces of the observed system. Therefore, these external forces should be taken into account when reconstructing the climate dy- namics. This paper presents a novel technique in predicting nonstationary time series. The main difference of this new technique from some previous methods is that it incorporates the driving forces in the pre- diction model. To appraise its effectiveness, three prediction experiments were carried out using the data generated from some known classical dynamical models and a climate model with multiple external forces. Experimental results indicate that this technique is able to improve the prediction skill effectively.
基金National Natural Science Foundation of China(No. 50275052).
文摘In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented.
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant No LY15A050001the National Natural Science Foundation of China under Grant Nos 11247007 and 11374262the Open Fund of the State Key Laboratory of High-Field Laser Physics at SIOM
文摘Evolution of spatial distribution of charged particulates under the action of an external force is investigated. It is found that starting from a homogeneous Maxwellian distribution of particulates, clusters can form and aggregate. The evolution process, as well as the asymptotic number and configuration of the clusters formed, depends strongly on the strength of the external force. The particulates in most of the final clusters are in the crystal state, as can also be deduced from the corresponding velocity and auto-correlation functions.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975416 and 51275359)。
文摘Accurate quantification of external force is the key to improve the high-precision hemming of autobody closure panels.However,the mechanism of external force on forming quality of complex contour sheet metal with adhesive is not clear subjected to geometric curvature and materials.In the present study,taking the curved edge aluminum sheet as the research object,SPH(smooth particle hydrodynamics)is introduced to simulate the viscous adhesive,and the SPH-FEM(Finite element method)coupling model of adhesive and panels considering the viscosity-pressure effect is established.The numerical simulation of the roller hemming process is carried out,then the validity and reliability of the proposed method are verified by measuring the external force in real time using triaxial force sensor.The multi-step forming process and the effect of external force on the roll in/out,surface wave and plastic strain of aluminum alloy sheet under the viscosity-pressure effect are studied,and the relationship between process parameters and external force is discussed.Results show that the coupling SPH-FEM model can well reflect the hemming process of curved edge structure.The normal force is about 2–3 times of the tangential force in the pre and final hemming process.Compared with the case without adhesive,the surface wave of flange part of the hemming with adhesive is slightly larger.The normal force and the tangential force increase about 90 N and 30 N respectively,when the height increases by 1 mm.It provides an important basis for the accurate control of hemming trajectory and the improvement of manufacturing quality of autobody closure panels.
文摘According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975088 and 11705041)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY15A050001)。
文摘Evolution of the charged grains in a two-dimensional dusty plasma under a spatially harmonic external force,in particular,their long-time behaviors after the force has been withdrawn,is studied by using molecular dynamics simulation.Under an external force and a grain–grain interaction force,initially homogeneously distributed grains can reach a quasistationary state in the form of a disk crystal.After the external force is withdrawn,the disk moves initially with its size and shape nearly unchanged until it rapidly stops moving,and eventually the disk grain rotates like a vortex.The time needed to reach the final state increases with the strength of the initial external force increasing.
基金supported by Scientific Research Fund of Hunan Provincial Education Department under Grant No. 07B075Interactive Project Fund of Xiangtan University under Grant No. 061ND09Dr. Shangyou Zeng's Initial Scientific Research Fund of Xiangtan University
文摘We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the kink moves in the opposite direction of the external DC force, the kink will be accelerated and the potential of the FK chain in the external force field is transformed to be the kinetic energy of the kink. If the kink reaches the boundary of the FK chain, the kink will be bounced back and moves in the opposite direction, then the kink will be decelerated gradually and the kinetic energy of the kink & transformed to be the potential of the FK chain in the external force field. If the speed of the kink reaches zero, the kink will move in the opposite direction again driven by the external DC force, and a new oscillating cycle begins. Simulation result demonstrates exactly the transformation between the kinetic energy of the kink and the potential of the FK chain in the external force field. The interesting energy exchange is induced by the special topology of kinks, and other localized modes, such as breathers and envelope solitons, have no the interesting phenomenon.
文摘The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.
基金supported by the Fundamental Research Funds for the Central Universities(2012TS008)the National Natural Science Foundation of China (11026054)
文摘In this paper, the Cauchy problem for the inelastic Boltzmann equation with external force is considered in the case of initial data with infinite energy. More precisely, under the assumptions on the bicharacteristic generated by external force, we prove the global existence of solution for small initial data compared to the local Maxwellian exp(-p|x - v|^2), which has infinite mass and energy.
文摘By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.
基金National Natural Science Foundation of China (No. 61975058)Blue Shield Technology Project,China (No. LD20170209)。
文摘The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.
基金supported by the Major State Basic Research Development Program of China(973 Program)under Grant No.2010CB951903the National Natural Science Foundation of China under Grant Nos.40890054,41205043,and 41105054
文摘A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the ant hropogenic- forcing-dominant period.
基金supported by National Natural Science Foundation of China under GrantNos. 40625014, 40821092, and 90711004the National Basic Research Program of China (2006CB403603)the China Meteorological Administration (GYHY200706010,GYHY200706005)
文摘The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model HadGEM1, which was developed by the Met Office Hadley Centre for Climate Research. The results indicate that HadGEM1 performs well in simulating the observed decreasing trend of global land monsoon precipitation over the past 50 years. This trend mainly occurred in the Northern Hemisphere and is significantly different from the trend of natural variability due to ocean-atmosphere-land interactions. The coherence between the simulation and the observations indicates that the specified external forcing agents, including GHGs and aerosols as well as solar variability and ozone, are important factors that have affected the decreasing trend of global land monsoon precipitation in the past 50 years.