The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percen...The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.展开更多
In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the fea...In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the features of basic climate index and extreme climate events. The results showed that the annual mean temperature and seasonal mean temperature rose significantly, and the rising rate of the annual mean temperature is 0.27℃ per decade; the extreme high temperature days have increased; the interdecadal change of annual precipitation is marked, and the precipitation in winter and summer increased slightly, while decreased slightly in spring and autumn. The annual precipitation increased in the area west of the Yellow River, whereas decreased in the area east of the river. The drought had an increasing trend. There were 17 droughts during 1961-2010, and 10 droughts from 1991 to 2010. The number of droughts in spring and autumn increased, while decreased in summer.展开更多
The spatiotemporal variations of the site and regional droughts in China during 1960–2009 were analyzed by applying a daily composite-drought index (CDI) to 722 stations in China's Mainland. Droughts frequently...The spatiotemporal variations of the site and regional droughts in China during 1960–2009 were analyzed by applying a daily composite-drought index (CDI) to 722 stations in China's Mainland. Droughts frequently happened in a zone extended from Southwest China to the Yellow River, North China, and the southwestern part of Northeast China, with two centers of high frequency in North China and Southwest China. In Southwest and South China, droughts tend to happen during the winter. In North China and along the Yellow River, droughts mainly occur during the winter and during May–June. During the past 50 years, the geographical distribution of site drought events showed high frequencies (0.9–1.3 times per year) in the upper Yellow River basin and North China, comparing with moderate frequencies (0.6–0.9 times per year) in Southwest China and the southwestern part of Northeast China and with lower frequencies over the middle and lower Yangtze River basin. And the frequencies increased over China's Mainland except for the upper reaches of the Yangtze River. A regional drought (RD) event is a widespread and persistent event that covers at least five adjacent sites and lasts for at least 10 days. There were 252 RD events in the past 50 years—five times per year. Most RD events lasted for 100 days and covered 100 stations, but the longest and largest RD event lasted for 307 days from 6 September 1998 to 9 July 1999 and covered 327 stations from North to Southwest China.展开更多
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41275078)
文摘The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.
基金supported by the Special Project on Climate Change in China Meteorological Administation(No. CCSF2010-5)
文摘In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the features of basic climate index and extreme climate events. The results showed that the annual mean temperature and seasonal mean temperature rose significantly, and the rising rate of the annual mean temperature is 0.27℃ per decade; the extreme high temperature days have increased; the interdecadal change of annual precipitation is marked, and the precipitation in winter and summer increased slightly, while decreased slightly in spring and autumn. The annual precipitation increased in the area west of the Yellow River, whereas decreased in the area east of the river. The drought had an increasing trend. There were 17 droughts during 1961-2010, and 10 droughts from 1991 to 2010. The number of droughts in spring and autumn increased, while decreased in summer.
基金supported jointly bythe National Natural Science Foundation of China (GrantNo. 40975039)the Key Technologies R&D Program(Grant No. 2009BAC51B04)+1 种基金the Chinese COPES Project (Grant No. GYHY201006018)The CDI data was provided by the Key Technologies R&D Program (GrantNo. 2007BAC29B06).
文摘The spatiotemporal variations of the site and regional droughts in China during 1960–2009 were analyzed by applying a daily composite-drought index (CDI) to 722 stations in China's Mainland. Droughts frequently happened in a zone extended from Southwest China to the Yellow River, North China, and the southwestern part of Northeast China, with two centers of high frequency in North China and Southwest China. In Southwest and South China, droughts tend to happen during the winter. In North China and along the Yellow River, droughts mainly occur during the winter and during May–June. During the past 50 years, the geographical distribution of site drought events showed high frequencies (0.9–1.3 times per year) in the upper Yellow River basin and North China, comparing with moderate frequencies (0.6–0.9 times per year) in Southwest China and the southwestern part of Northeast China and with lower frequencies over the middle and lower Yangtze River basin. And the frequencies increased over China's Mainland except for the upper reaches of the Yangtze River. A regional drought (RD) event is a widespread and persistent event that covers at least five adjacent sites and lasts for at least 10 days. There were 252 RD events in the past 50 years—five times per year. Most RD events lasted for 100 days and covered 100 stations, but the longest and largest RD event lasted for 307 days from 6 September 1998 to 9 July 1999 and covered 327 stations from North to Southwest China.