Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the cluster- ing ex...Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the cluster- ing extreme drought events were investigated by using the spatial point process theory. It is found that severe droughts present a trend of gradual increase as a result of the significant increase and clustering tendency of severe droughts in autumn. The periodicity analysis of the clustering extreme droughts in different seasons suggests that there is a remarkable interdecadal change in the occurrence of clustering extreme droughts in winter. Meanwhile, it is revealed that the clustering extreme drought events exhibit greatly different annual mean spatial distributions during 1961 2010, with scattered and concentrated clustering zones alternating on the decadal timescale. Furthermore, it is found that the decadal-mean spatial distributions of extreme drought events in summer are correlated out of phase with those of the rainy bands over China in the past 50 years, and a good decadal persistence exists between the autumn and winter extreme droughts, implying a salient feature of consecutive autunm-winter droughts in this 50-yr period. Compared with other regions of China, Southwest China bears the most prominent characteristic of clustering extreme droughts.展开更多
In this study, the Palmer Drought Severity Index (PDSI) was used to analyze the average and extreme dry/wet states of Asia and North America from 1953 to 2003. The results indicate that the two continents underwent ...In this study, the Palmer Drought Severity Index (PDSI) was used to analyze the average and extreme dry/wet states of Asia and North America from 1953 to 2003. The results indicate that the two continents underwent drying trends during this period. Compared with North America, Asia showed more severe drought trends. However, more significant and regular seasonal variation for drought was found in North America. The driest regions in Asia were located in the northern region of China, Mongolia, and eastern mid-Siberian plateau. Most regions in central North America were relatively wetter than other regions. The northern and southwestern regions of North America, as well as the Atlantic and Pacific coastal areas, experienced the most drought during this period. A sharp increase of the drought area and the number of extreme drought events took place from 1997 to 2003 in both Asia and North America. Severe drought events were more likely to occur during the summer on both continents. Asia had the most extreme drought events during July, but North America reached its highest drought frequency from June to September. In Asia, a persistent increasing trend of extreme drought emerged throughout the studied period. However, a more complex evolution of drought emerged in North America: a decreasing trend appeared before the mid-1960s and an increasing trend appeared after the late 1970s. A relatively steady dry/wet status was observed between the mid-1960s and the late 1970s. The role of exceptional, extreme drought events with respect to the La Nin?a event was considered during 1997–2003.展开更多
In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the fea...In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the features of basic climate index and extreme climate events. The results showed that the annual mean temperature and seasonal mean temperature rose significantly, and the rising rate of the annual mean temperature is 0.27℃ per decade; the extreme high temperature days have increased; the interdecadal change of annual precipitation is marked, and the precipitation in winter and summer increased slightly, while decreased slightly in spring and autumn. The annual precipitation increased in the area west of the Yellow River, whereas decreased in the area east of the river. The drought had an increasing trend. There were 17 droughts during 1961-2010, and 10 droughts from 1991 to 2010. The number of droughts in spring and autumn increased, while decreased in summer.展开更多
基金Supported by the National Natural Science Foundation of China (41005043 and U1133603)National Basic Research and Development (973) Program of China (2012CB955901)
文摘Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the cluster- ing extreme drought events were investigated by using the spatial point process theory. It is found that severe droughts present a trend of gradual increase as a result of the significant increase and clustering tendency of severe droughts in autumn. The periodicity analysis of the clustering extreme droughts in different seasons suggests that there is a remarkable interdecadal change in the occurrence of clustering extreme droughts in winter. Meanwhile, it is revealed that the clustering extreme drought events exhibit greatly different annual mean spatial distributions during 1961 2010, with scattered and concentrated clustering zones alternating on the decadal timescale. Furthermore, it is found that the decadal-mean spatial distributions of extreme drought events in summer are correlated out of phase with those of the rainy bands over China in the past 50 years, and a good decadal persistence exists between the autumn and winter extreme droughts, implying a salient feature of consecutive autunm-winter droughts in this 50-yr period. Compared with other regions of China, Southwest China bears the most prominent characteristic of clustering extreme droughts.
基金supported by the NSFC project (Grant Nos. 40905037, 40775055,40705016, and 40828004)the NSFC key program(Grant No. 40830956)
文摘In this study, the Palmer Drought Severity Index (PDSI) was used to analyze the average and extreme dry/wet states of Asia and North America from 1953 to 2003. The results indicate that the two continents underwent drying trends during this period. Compared with North America, Asia showed more severe drought trends. However, more significant and regular seasonal variation for drought was found in North America. The driest regions in Asia were located in the northern region of China, Mongolia, and eastern mid-Siberian plateau. Most regions in central North America were relatively wetter than other regions. The northern and southwestern regions of North America, as well as the Atlantic and Pacific coastal areas, experienced the most drought during this period. A sharp increase of the drought area and the number of extreme drought events took place from 1997 to 2003 in both Asia and North America. Severe drought events were more likely to occur during the summer on both continents. Asia had the most extreme drought events during July, but North America reached its highest drought frequency from June to September. In Asia, a persistent increasing trend of extreme drought emerged throughout the studied period. However, a more complex evolution of drought emerged in North America: a decreasing trend appeared before the mid-1960s and an increasing trend appeared after the late 1970s. A relatively steady dry/wet status was observed between the mid-1960s and the late 1970s. The role of exceptional, extreme drought events with respect to the La Nin?a event was considered during 1997–2003.
基金supported by the Special Project on Climate Change in China Meteorological Administation(No. CCSF2010-5)
文摘In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the features of basic climate index and extreme climate events. The results showed that the annual mean temperature and seasonal mean temperature rose significantly, and the rising rate of the annual mean temperature is 0.27℃ per decade; the extreme high temperature days have increased; the interdecadal change of annual precipitation is marked, and the precipitation in winter and summer increased slightly, while decreased slightly in spring and autumn. The annual precipitation increased in the area west of the Yellow River, whereas decreased in the area east of the river. The drought had an increasing trend. There were 17 droughts during 1961-2010, and 10 droughts from 1991 to 2010. The number of droughts in spring and autumn increased, while decreased in summer.