期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021: A Convection-Permitting Ensemble Modeling Study 被引量:4
1
作者 Yali LUO Jiahua ZHANG +5 位作者 Miao YU Xudong LIANG Rudi XIA Yanyu GAO Xiaoyu GAO Jinfang YIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期393-409,共17页
This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permit... This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced. 展开更多
关键词 URBANIZATION extreme rainfall convection-permitting ensemble simulation land-atmosphere interaction boundary layer water vapor transport
下载PDF
PV Perspective of Impacts on Downstream Extreme Rainfall Event of a Tibetan Plateau Vortex Collaborating with a Southwest China Vortex 被引量:3
2
作者 Guanshun ZHANG Jiangyu MAO +1 位作者 Yimin LIU Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1835-1851,共17页
An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China... An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China Vortex(SWCV).The physical mechanism for this event was investigated from Potential Vorticity(PV)and omega perspectives based on MERRA-2 reanalysis data.The cyclogenesis of the TPV over the northwestern TP along with the lower-tropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave.Subsequently,the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY.The merged TPV−SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY.With the TPV-embedded mid-tropospheric trough migrating continuously eastward,the almost stagnant SWCV was re-separated from the overlying TPV,forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding,isentropic-displacement,and diabatic heating-related ascending components over the MLY.This led to more intense rainfall.Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating,as well as the feedback of condensation latent heating on the isentropic-displacement vertical velocity. 展开更多
关键词 extreme rainfall Tibetan Plateau vortex Southwest China vortex PV vertical velocity
下载PDF
Why Does Extreme Rainfall Occur in Central China during the Summer of 2020 after a Weak El Niño? 被引量:3
3
作者 Congxi FANG Yu LIU +1 位作者 Qiufang CAI Huiming SONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2067-2081,共15页
In summer 2020,extreme rainfall occurred throughout the Yangtze River basin,Huaihe River basin,and southern Yellow River basin,which are defined here as the central China(CC)region.However,only a weak central Pacific(... In summer 2020,extreme rainfall occurred throughout the Yangtze River basin,Huaihe River basin,and southern Yellow River basin,which are defined here as the central China(CC)region.However,only a weak central Pacific(CP)El Niño happened during winter 2019/20,so the correlations between the El Niño–Southern Oscillation(ENSO)indices and ENSO-induced circulation anomalies were insufficient to explain this extreme precipitation event.In this study,reanalysis data and numerical experiments are employed to identify and verify the primary ENSO-related factors that cause this extreme rainfall event.During summer 2020,unusually strong anomalous southwesterlies on the northwest side of an extremely strong Northwest Pacific anticyclone anomaly(NWPAC)contributed excess moisture and convective instability to the CC region,and thus,triggered extreme precipitation in this area.The tropical Indian Ocean(TIO)has warmed in recent decades,and consequently,intensified TIO basinwide warming appears after a weak El Niño,which excites an extremely strong NWPAC via the pathway of the Indo-western Pacific Ocean capacitor(IPOC)effect.Additionally,the ENSO event of 2019/20 should be treated as a fast-decaying CP El Niño rather than a general CP El Niño,so that the circulation and precipitation anomalies in summer 2020 can be better understood.Last,the increasing trend of tropospheric temperature and moisture content in the CC region after 2000 is also conducive to producing heavy precipitation. 展开更多
关键词 extreme rainfall Northwest Pacific anticyclone anomaly(NWPAC) Indo-western Pacific Ocean capacitor(IPOC) Tropical Indian Ocean warming trend fast-decaying El Niño
下载PDF
Climatology of Tropical Cyclone Extreme Rainfall over China from 1960 to 2019 被引量:2
4
作者 Ying LI Dajun ZHAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第2期320-332,共13页
Tropical cyclone extreme rainfall(TCER)causes devastating floods and severe damage in China and it is therefore important to determine its long-term climatological distribution for both disaster prevention and operati... Tropical cyclone extreme rainfall(TCER)causes devastating floods and severe damage in China and it is therefore important to determine its long-term climatological distribution for both disaster prevention and operational forecasting.Based on the tropical cyclone(TC)best-track dataset and TC precipitation data from 1960 to 2019,the spatiotemporal distribution of TCER affecting China is analyzed.Results show that there were large regional differences in the threshold for TCER in China,decreasing from the southeastern coast to the northwest inland.TCER occurred infrequently in northern China but had a high intensity and was highly localized.The frequency and intensity of TCER showed slightly increasing trends over time and was most likely to occur in August(41.0%).Most of the TC precipitation processes with extreme rainfall lasted for four to six days,with TCER mainly occurring on the third to fourth days.TCER with wide areas showed a northwestward prevailing track and a westward prevailing track.Strong TCs are not always accompanied by extreme precipitation while some weak TCs can lead to very extreme rainfall.A total of 64.7%(35.3%)of the TCER samples occurred when the TC was centered over the land(sea).TCER≥250 mm was located within 3°of the center of the TC.When the center of the TC was located over the sea(land),the extreme rainfall over land was most likely to appear on its northwestern(northeastern)side with a dispersed(concentrated)distribution.TCER has unique climatic characteristics relative to the TC precipitation. 展开更多
关键词 tropical cyclones extreme rainfall THRESHOLD track characteristics intensity characteristics
下载PDF
Impact of the Monsoonal Surge on Extreme Rainfall of Landfalling Tropical Cyclones 被引量:2
5
作者 Dajun ZHAO Yubin YU Lianshou CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第5期771-784,共14页
A comparative analysis and quantitative diagnosis has been conducted of extreme rainfall associated with landfalling tropical cyclones(ERLTC)and non-extreme rainfall(NERLTC)using the dynamic composite analysis method.... A comparative analysis and quantitative diagnosis has been conducted of extreme rainfall associated with landfalling tropical cyclones(ERLTC)and non-extreme rainfall(NERLTC)using the dynamic composite analysis method.Reanalysis data and the tropical cyclone precipitation dataset derived from the objective synoptic analysis technique were used.Results show that the vertically integrated water vapor transport(Q_(vt))during the ERLTC is significantly higher than that during the NERLTC.The Q_(vt)reaches a peak 1−2 days before the occurrence of the ERLTC and then decreases rapidly.There is a stronger convergence for both the Q_(vt)and the horizontal wind field during the ERLTC.The Q_(vt)convergence and the wind field convergence are mainly confined to the lower troposphere.The water vapor budget on the four boundaries of the tropical cyclone indicates that water vapor is input through all four boundaries before the occurrence of the ERLTC,whereas water vapor is output continuously from the northern boundary before the occurrence of the NERLTC.The water vapor inflow on both the western and southern boundaries of the ERLTC exceeds that during the NERLTC,mainly as a result of the different intensities of the southwest monsoonal surge in the surrounding environmental field.Within the background of the East Asian summer monsoon,the low-level jet accompanying the southwest monsoonal surge can increase the inflow of water vapor at both the western and southern boundaries during the ERLTC and therefore could enhance the convergence of the horizontal wind field and the water vapor flux,thereby resulting in the ERLTC.On the other hand,the southwest monsoonal surge decreases the zonal mean steering flow,which leads to a slower translation speed for the tropical cyclone associated with the ERLTC.Furthermore,a dynamic monsoon surge index(DMSI)defined here can be simply linked with the ERLTC and could be used as a new predictor for future operational forecasting of ERLTC. 展开更多
关键词 landfalling tropical cyclones extreme rainfall monsoon surge dynamic composite analysis
下载PDF
Understanding the Evolution and Socio-Economic Impacts of the Extreme Rainfall Events in March-May 2017 to 2020 in East Africa 被引量:1
6
作者 Ladislaus Benedict Chang’a Agnes Lawrence Kijazi +10 位作者 Kantamla Biseke Mafuru Patricia Achieng Nying’uro Musa Ssemujju Bamanya Deus Alfred Lawrence Kondowe Isack Baliyendeza Yonah Mohamed Ngwali Sudi Yasini Kisama Gahigi Aimable Joseph Ndakize Sebaziga Blandine Mukamana 《Atmospheric and Climate Sciences》 2020年第4期553-572,共20页
This study aimed at assessing the evolution, distribution and the socio-economic impacts of extreme rainfall over East Africa during the March, April and May (MAM) rainfall season focusing on assessing the trends and ... This study aimed at assessing the evolution, distribution and the socio-economic impacts of extreme rainfall over East Africa during the March, April and May (MAM) rainfall season focusing on assessing the trends and contribution of MAM rainfall in mean annual rainfall across the region. It employed Principal Component Analysis (PCA) methods to capture the patterns and variability of MAM rainfall. The PCA results indicated that the first Principal Component (PC) describe 17% of the total variance, while the first six PCs account only 53.5% of the total variance in MAM rainfall, underscoring the complexity of rainfall forcing factors in the region. It has been observed that MAM rainfall accounts about 30% - 60% of the mean annual rainfall in most parts of the region, signifying its importance in agriculture, water, energy and other socio-economic sectors. MAM has been characterized by increasing variability with varying trend patterns across the region. The MAM rainfall trend is not homogeneous across the region;some areas are experiencing a slight decreasing rainfall trend, while other areas are experiencing a slight increasing rainfall trend. The observed trend dynamics is consistent with the global trend patterns in precipitation as depicted in recent Intergovernmental Panel on Climate Change (IPCC) reports. Over the last five years MAM rainfall season have been characterized by record-breaking extremes. On 8th May 2017, Tanga and Mombasa meteorological stations recorded 316 mm and 235.1 mm of rainfall in 24 hours respectively, which are the highest amounts for these respective stations, since their establishment. Record highest 24 hours rainfall amounting to 134.9 mm and 119.4 mm were also observed at Buginyanya and Kawanda meteorological stations in Uganda on 18th March 2018 and 7<sup>th</sup> May 2020. On 6<sup>th</sup> May 2020, Byimana meteorological station in Rwanda, also observed 140.6 mm of rainfall in 24 hours, the highest since its establishment. These extremes have caused multiple losses of life and property, and severe damages to infrastructure. Unfortunately, the frequency and intensity of these extremes are projected to increase under a changing regional climate patterns. It is therefore important that more studies are carried out to enhance understanding about the evolution, dynamics and predictability of these extremes in East Africa region. 展开更多
关键词 extreme rainfall Events Principal Components MAM ENSO IOD
下载PDF
Contrasts between the Interannual Variations of Extreme Rainfall over Western and Eastern Sichuan in Mid-summer
7
作者 Mengyu DENG Riyu LU Chaofan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期999-1011,共13页
Rainfall amount in mid-summer(July and August)is much greater over eastern than western Sichuan,which are characterized by basin and plateau,respectively.It is shown that the interannual variations of extreme rainfall... Rainfall amount in mid-summer(July and August)is much greater over eastern than western Sichuan,which are characterized by basin and plateau,respectively.It is shown that the interannual variations of extreme rainfall over these two regions are roughly independent,and they correspond to distinct anomalies of both large-scale circulation and sea surface temperature(SST).The enhanced extreme rainfall over western Sichuan is associated with a southward shift of the Asian westerly jet,while the enhanced extreme rainfall over eastern Sichuan is associated with an anticyclonic anomaly in the upper troposphere over China.At low levels,on the other hand,the enhanced extreme rainfall over western Sichuan is related to two components of wind anomalies,namely southwesterly over southwestern Sichuan and northeasterly over northeastern Sichuan,which favor more rainfall under the effects of the topography.Relatively speaking,the enhanced extreme rainfall over eastern Sichuan corresponds to the low-level southerly anomalies to the east of Sichuan,which curve into northeasterly anomalies over the basin when they encounter the mountains to the north of the basin.Therefore,it can be concluded that the topography in and around Sichuan plays a crucial role in inducing extreme rainfall both over western and eastern Sichuan.Finally,the enhanced extreme rainfall in western and eastern Sichuan is related to warmer SSTs in the Maritime Continent and cooler SSTs in the equatorial central Pacific,respectively. 展开更多
关键词 extreme rainfall SICHUAN interannual variation TOPOGRAPHY large-scale circulation
下载PDF
Trend and Return Level Analysis of Extreme Rainfalls in Senegal
8
作者 Mamadou Sarr Mahamat Adoum Moussa +1 位作者 El Hadji Deme Bouya Diop 《Journal of Water Resource and Protection》 2022年第3期221-237,共17页
In recent years, Senegal has been confronted with increasingly frequent and damaging extreme events. In the context of climate change, we conducted this study to characterize the trends of rainfall extremes in Senegal... In recent years, Senegal has been confronted with increasingly frequent and damaging extreme events. In the context of climate change, we conducted this study to characterize the trends of rainfall extremes in Senegal. In this work, we used daily rainfall data from 27 stations in Senegal from the period 1951 to 2005 (55 years). To study their linear trends, non-stationary extreme value models with time as a covariate are fitted to evaluate them. Our results indicate a decreasing trend of extreme rainfalls at most of the stations except for 5 stations. However, the decreasing trends are only significant for two stations (Thiès and Kidira), however, this can only be taken as information that climate change may have already impacted extreme rainfalls. For the 20-year and 30-year return periods, the results show that they have undergone changes, in fact for almost all stations, the trends in return periods are decreasing. 展开更多
关键词 Climate Change extreme rainfall Rain Trend Return Level Senegal
下载PDF
Real Time Monitoring of Extreme Rainfall Events with Simple X-Band Mini Weather Radar
9
作者 Silvano Bertoldo Claudio Lucianaz +1 位作者 Marco Allegretti Giovanni Perona 《Atmospheric and Climate Sciences》 2016年第2期285-299,共15页
Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficien... Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations. 展开更多
关键词 X-Band Radar extreme rainfall Event Precipitation Monitoring High Temporal Resolution High Spatial Resolution Real Time Monitoring Single Polarization
下载PDF
Extreme Rainfall Events over the Amazon Basin Produce Significant Quantities of Rain Relative to the Rainfall Climatology
10
作者 Adriane Lima Brito Jose Augusto Paixao Veiga Marcos Cezar Yoshida 《Atmospheric and Climate Sciences》 2014年第2期179-191,共13页
Although much effort has been made to characterize and understand extreme rainfall’s causes and effects, little is known about their frequency and intensity. Moreover, knowledge about their contribution to the total ... Although much effort has been made to characterize and understand extreme rainfall’s causes and effects, little is known about their frequency and intensity. Moreover, knowledge about their contribution to the total rainfall climatology is still minimal, especially over the Amazon where rainfall data are very scarce. In this paper we propose to classify extreme rainfall events by type and analyze their frequency and intensity over South America with a focus on the Amazon basin. Gridded daily data from the MERGE/CPTEC product over a period of 15 years (1998–2013) was used. An adaptation of Rx5d climate index was applied to select different kinds of extreme rainfall for the purpose of quantifying their frequency and intensity as well as their contribution to the accumulated rainfall climatology. According to the results, all kinds of extreme rainfall events can be observed over the studied area. However, the quantity of rainfall produced by each type is different, and consequently their percent contributions to the total accumulated rainfall climatology also differ. For example: in the Amazon region EET-I is responsible for 15% - 40% of the total accumulated rainfall. Moreover, in the Brazilian northeast there are regions where EET-I exceeds 40% of the total rainfall. In northeast Brazil EET-II is responsible up to 30% of the total accumulated rainfall. EET-III is responsible for 5% - 15% in the Amazon basin, 25% - 45% in northeast Brazil and 10% - 45% over Roraima State. Area-mean time variation shows that the quantity of rainfall extremes over the Amazon basin was reduced during the El Nino years of 2002, 2005, 2007 and 2010, while during the La Ni?a episodes of 1999, 2008 and 2011 the quantity of rainfall related to the extremes increased. 展开更多
关键词 extreme rainfall Events CLIMATOLOGY AMAZON
下载PDF
Microphysical Characteristics of Extreme-Rainfall Convection over the Pearl River Delta Region, South China from Polarimetric Radar Data during the Pre-summer Rainy Season 被引量:1
11
作者 Hao HUANG Kun ZHAO +1 位作者 Johnny CLCHAN Dongming HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期874-886,共13页
During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extrem... During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extreme rainfall rates(ERCFs)are examined.In the regions with high ERCF occurrence frequency,sub-regional differences are found in the lightning flash rate(LFR)distributions.In the region with higher LFRs,the ERCFs have larger volumes of high reflectivity factor above the freezing level,corresponding to more active riming processes.In addition,these ERCFs are more organized and display larger spatial coverage,which may be related to the stronger low-level wind shear and higher terrain in the region.In the region with lower LFRs,the ERCFs have lower echo tops and lower-echo centroids.However,no clear differences of the most unstable convective available potential energy(MUCAPE)exist in the ERCFs in the regions with different LFR characteristics.Regardless of the LFRs,raindrop collisional coalescence is the main process for the growth of raindrops in the ERCFs.In the ERCFs within the region with lower LFRs,the main mechanism for the rapid increase of liquid water content with decreasing altitude below 4 km is through the warm-rain processes converting cloud drops to raindrops.However,in those with higher LFRs,the liquid water content generally decreases with decreasing altitude. 展开更多
关键词 MICROPHYSICS extreme rainfall rate polarimetric radar lightning flash rate
下载PDF
Disastrous Persistent Extreme Rainfall Events of the 2022 Pre-Flood Season in South China:Causes and Subseasonal Predictions 被引量:1
12
作者 Jiehong XIE Pang-Chi HSU +2 位作者 Yamin HU Qiaomei LIN Mengxi YE 《Journal of Meteorological Research》 SCIE CSCD 2023年第4期469-485,共17页
Two persistent extreme rainfall events(PEREs) with record-breaking amounts of rainfall and long duration caused disastrous impact during the 2022 pre-flood season in South China. Atmospheric intraseasonal variability ... Two persistent extreme rainfall events(PEREs) with record-breaking amounts of rainfall and long duration caused disastrous impact during the 2022 pre-flood season in South China. Atmospheric intraseasonal variability played a key role in triggering and maintaining both PEREs, but its major impact on each event was associated with different modes. For the first PERE(10-15 May;PERE1), the tropical and extratropical quasi-biweekly oscillations jointly contributed to the extreme rainfall intensity. In contrast, the long duration(6-21 June) of the heavy rainfall during the second PERE(PERE2) was closely related to prolonged convection and moisture transport anomalies induced mainly by the tropical 30-90-day variability. Subseasonal-to-seasonal predictions by the model of the ECMWF showed limited skill in relation to the rainfall intensity of PERE1 and PERE2 beyond 1–2 weeks. Further assessment suggested that the fidelity of the PERE predictions was linked to model skill in predicting the phase evolution and intensity of tropical and extratropical intraseasonal variabilities. Thus, efficient monitoring and accurate prediction of the various modes of atmospheric intraseasonal variability are fundamental to reducing the hazard associated with PEREs in South China. 展开更多
关键词 persistent extreme rainfall event intraseasonal oscillation South China subseasonal-to-seasonal prediction
原文传递
Extended-Range Precursors for Summer Consecutive Extreme Rainfall in the Yangtze River Valley Related to Intraseasonal Variations of the Pacific-Japan Teleconnection
13
作者 Junming CHEN Lan XIA +1 位作者 Junmei LYU Lun LI 《Journal of Meteorological Research》 SCIE CSCD 2023年第3期324-340,共17页
In summer,the Yangtze River valley(YRV)in central–eastern China frequently suffers consecutive extreme rainfall(CER)events,causing floods and huge damages.On the daily timescale,our previous study has shown that the ... In summer,the Yangtze River valley(YRV)in central–eastern China frequently suffers consecutive extreme rainfall(CER)events,causing floods and huge damages.On the daily timescale,our previous study has shown that the Pacific–Japan(PJ)teleconnection is related to the CER events over the YRV,and is a source for long-term(lead time of about 10 days)forecasts of CER events.To facilitate extended-range(lead time of about 20 days)prediction of CER,in the present study,we use the band-pass filter for the PJ teleconnection to keep only the prolonged atmospheric circulation information at the intraseasonal timescale and try to identify more advanced precursors for the CER events over the YRV.Power spectrum analysis was implemented on 9-day sliding mean of the precipitation anomalies.It is found that summer precipitation in YRV has significant 10–40-day oscillations,and the CER events over the YRV are affected by the intraseasonal oscillation(ISO)of the PJ teleconnection.When the ISO of the PJ teleconnection enters its positive phase,it is favorable for CER events to occur.Dynamic diagnoses and model experiments demonstrate that the ISO of the PJ teleconnection is attributed to the intraseasonal convective activities and diabatic heating around the Philippines,which generate significant northward energy dispersion and propagation of Rossby waves up to 16 days prior to occurrences of the CER events in the YRV.The ISO of the PJ teleconnection and the convective activities in the tropical South Asia provide significant and earlier precursors for extended-range forecasts of the CER events along the YRV. 展开更多
关键词 consecutive extreme rainfall intraseasonal oscillation Pacific-Japan teleconnection convective activities
原文传递
Performance of a Global Spectral Model with Dry Air-Mass and Total Air-Mass Conserving Dynamical Cores:A Case Study of the July 2021 Henan Extreme Rainfall Event
14
作者 Xiangrong YANG Weimin ZHANG +2 位作者 Jun PENG Shaoying LI Jianping WU 《Journal of Meteorological Research》 SCIE CSCD 2023年第1期20-44,共25页
This study investigates the effects of the assumption on the types of air-mass conservation prescribed in numerical models.First,predictions of the July 2021(“21.7”)Henan extreme rainfall event from the Integrated F... This study investigates the effects of the assumption on the types of air-mass conservation prescribed in numerical models.First,predictions of the July 2021(“21.7”)Henan extreme rainfall event from the Integrated Forecast System(IFS)at ECMWF were compared with those from the Yin-He Global Spectral Model(YHGSM),which is a global spectral model with total air-mass conservation(TMC)and dry air-mass conservation(DMC)options.Then,a sensitivity test between simulations from the YHGSM adopting TMC and DMC was conducted.The results show that both the IFS and YHGSM predicted relatively well the 24-h rainfall amount less than 100 mm day−1 on 20 and 21 July 2021 at lead times of 84,60,and 36 h.For heavy precipitation exceeding 100 mm day−1,however,both models obviously underestimated the daily rainfall amount on 20 July 2021,but the YHGSM produced more precise and stable precipitation forecasts on these two days than the IFS,especially the maximum 24-h precipitation amount,with better consistency at lead times of 84,60,and 36 h.These differences are further examined in the sensitivity test.Predictions from the YHGSM with DMC show rainfall distributions and daily rainfall amounts closer to the observations at longer lead times.It is inferred that considering sources or sinks of total water in dynamical cores with DMC may have positive feedback for the precise prediction of condensates.For extreme rainfall events,the high local loss of total water may have caused a loss of the atmospheric mass,leading to an additional decrease in surface pressure.Subsequently,the unbalanced pressure gradient force enhances the cyclonic rotation of surface wind and strengthens convergence in the lower troposphere,which in turn further strengthens the vertical velocity,circularly contributing to the enhanced precipitation if the water vapor condition is favorable. 展开更多
关键词 dry(total)air-mass conservation water source(sink) “21.7”Henan extreme rainfall global model
原文传递
The Roles of Low-level Jets in “21·7” Henan Extremely Persistent Heavy Rainfall Event 被引量:6
15
作者 Yuhan LUO Yu DU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期350-373,共24页
An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitatio... An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale. 展开更多
关键词 extremely persistent heavy rainfall low-level jet dynamic and thermodynamic effect diurnal cycle
下载PDF
Analysis on Precipitation Efficiency of the “21.7” Henan Extremely Heavy Rainfall Event 被引量:1
16
作者 Lei YIN Fan PING +1 位作者 Jiahua MAO Shuanggen JIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期374-392,共19页
A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)... A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)and cloud-microphysical precipitation efficiency(CMPE)of the rainfall are analyzed based on the model results.Then,the key physical factors that influenced LSPE and CMPE,and the possible mechanisms for the extreme rainfall over Zhengzhou are explored.Results show that water vapor flux convergence was the key factor that influenced LSPE.Water vapor was transported by the southeasterly winds between Typhoon In-Fa(2021)and the subtropical high,and the southerly flow of Typhoon Cempaka(2021),and converged in Zhengzhou due to the blocking by the Taihang and Funiu Mountains in western Henan province.Strong moisture convergence centers were formed on the windward slope of the mountains,which led to high LSPE in Zhengzhou.From the perspective of CMPE,the net consumption of water vapor by microphysical processes was the key factor that influenced CMPE.Quantitative budget analysis suggests that water vapor was mainly converted to cloud water and ice-phase particles and then transformed to raindrops through melting of graupel and accretion of cloud water by rainwater during the heavy precipitation stage.The dry intrusion in the middle and upper levels over Zhengzhou made the high potential vorticity descend from the upper troposphere and enhanced the convective instability.Moreover,the intrusion of cold and dry air resulted in the supersaturation and condensation of water vapor,which contributed to the heavy rainfall in Zhengzhou. 展开更多
关键词 extremely heavy rainfall Zhengzhou large-scale precipitation efficiency cloud-microphysical precipitation efficiency
下载PDF
Assimilation of the FY-4A AGRI Clear-Sky Radiance Data in a Regional Numerical Model and Its Impact on the Forecast of the“21·7”Henan Extremely Persistent Heavy Rainfall 被引量:1
17
作者 Lan XU Wei CHENG +5 位作者 Zhongren DENG Juanjuan LIU Bin WANG Bin LU Shudong WANG Li DONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期920-936,共17页
Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional ob... Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed. 展开更多
关键词 FY-4A AGRI clear-sky radiance satellite data assimilation “21·7”Henan extremely persistent heavy rainfall
下载PDF
Long-Term Trends in Pre-Summer Daytime and Nocturnal Extreme Hourly Rainfall in a Coastal City of South China
18
作者 苏琳 李俊鲁 +1 位作者 黄伟健 冯志雄 《Journal of Tropical Meteorology》 SCIE 2023年第1期39-54,共16页
The long-term trends in the occurrence frequency of pre-summer daytime and nocturnal extreme hourly rainfall(EXHR) during 1988-2018 in Hong Kong and their spatial distributions are examined and analyzed. Despite a sig... The long-term trends in the occurrence frequency of pre-summer daytime and nocturnal extreme hourly rainfall(EXHR) during 1988-2018 in Hong Kong and their spatial distributions are examined and analyzed. Despite a significant increasing trend observed in the occurrence frequency of pre-summer EXHRs during the investigated period,the increase in daytime and nocturnal EXHRs show distinct spatial patterns. Nocturnal EXHRs show uniform increasing trends over the entire Hong Kong. However, the increase in daytime EXHRs is concentrated over the northern or eastern areas of Hong Kong, indicating a downstream shift of pre-summer EXHRs in Hong Kong with regard to the prevailing southwesterly monsoonal flows in south China. The clustering of weather types associated with daytime and nocturnal EXHRs further reveals that the increase in EXHRs over Hong Kong are mainly contributed by the increase of the events associated with southwesterly monsoonal flows with relatively high speeds. During the past few decades, the southwesterly monsoonal flows at coastal south China have undergone a substantial weakening due to the increased surface roughness induced by the urbanization over the Guangdong-Hong Kong-Macao Greater Bay Area since 1990s,leading to enhanced low-level convergence and thus significant increase in EXHRs at coastal south China. Meanwhile,daytime sea-wind circulation at coastal south China is markedly enhanced during the investigated period, which is the main reason for the northward shift of daytime EXHRs in Hong Kong. In addition, the blocked southwesterly monsoonal flows at coastal south China are detoured eastward, leading to stronger convergence and increase in EXHRs at eastern coast of Hong Kong, especially during daytime, when the easterly sea winds prevail at the region. 展开更多
关键词 extreme hourly rainfall diurnal rainfall cycle linear trend coastal Pearl River Delta
下载PDF
The Henan extreme rainfall in July 2021: Modulation of the northward-shift monsoon trough on the synoptic-scale wave train 被引量:1
19
作者 Si-Hua HUANG Zhi-Ping WEN +2 位作者 Xiao-Dan CHEN Yuan-Yuan GUO Zhe-Wen WANG 《Advances in Climate Change Research》 SCIE CSCD 2022年第6期819-825,共7页
The synoptic-scale wave train is a dominant pattern of the synoptic variability over the tropical western Pacific and usually affects the extreme weather over South China and Southeast Asia.Whether it could extend its... The synoptic-scale wave train is a dominant pattern of the synoptic variability over the tropical western Pacific and usually affects the extreme weather over South China and Southeast Asia.Whether it could extend its influence and contribute to the Henan extreme rainfall in July 2021 still needs to be unraveled.We found that during the Henan extreme rainfall days a positively synoptic-scale vorticity disturbance dominated Henan province,China,which was embedded in the synoptic-scale wave train that originated from the western North Pacific.Moreover,the propagating pathway of this synoptic-scale wave train located northward and was likely modulated by the latitudinal location change of the monsoon trough over the western North Pacific.A northernmost displacement of the monsoon trough in July 2021(∼23.2°N)would facilitate the synoptic-scale wave train to propagate farther northwestward via shifting the related barotropic conversion northward.Therefore,the synoptic-scale wave train from the tropics could reach Henan,provide the necessary lifting forcing,and supply abundant water vapor associated with the anomalous southerly for the occurrence of Henan extreme rainfall event.The results implicate that the pre-existing synoptic-scale wave train regulated by the location of the monsoon trough may be a potential precursor for heavy rainfalls in northern Central China. 展开更多
关键词 extreme rainfall Northern Central China Synoptic-scale wave train Monsoon trough Barotropic energy conversion
原文传递
CORRELATION BETWEEN PEAK INTENSITY OF EXTREME AFTERNOON SHORT-DURATION RAINFALL AND HUMIDITY AND SURFACE AIR TEMPERATURE IN SOUTHEAST COAST OF CHINA 被引量:1
20
作者 孙溦 原韦华 +1 位作者 李建 宇如聪 《Journal of Tropical Meteorology》 SCIE 2015年第3期276-284,共9页
Using hourly rainfall intensity, daily surface air temperature, humidity and low-level dew point depressions at55 stations in the southeast coast of China, and sea surface temperature from reanalysis in the coastal re... Using hourly rainfall intensity, daily surface air temperature, humidity and low-level dew point depressions at55 stations in the southeast coast of China, and sea surface temperature from reanalysis in the coastal region, this paper analyzes the connection between peak intensity of extreme afternoon short-duration rainfall(EASR) and humidity as well as surface air temperature. The dependency of extreme peak intensity of EASR on temperature has a significant transition. When daily highest surface temperature is below(above) 29°C, the peak rainfall intensity shows an ascending(descending) tendency with rising temperature. Having investigated the role of moisture condition in the variation of EASR and temperature, this paper discovered that the decrease of peak rainfall intensity with temperature rising is connected with the variation of relative humidity. At higher temperatures, the land surface relative humidity decreases dramatically as temperature further increases. During this process, the sea surface temperature maintains basically unchanged, resulting in indistinct variations of water vapor content at seas. As water vapor over land is mainly contributed by the quantitative moisture transport from adjacent seas, the decline of relative humidity over land will be consequently caused by the further rise of surface air temperature. 展开更多
关键词 extreme rainfall short duration surface air temperature relative humidity
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部