期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
Residual-Based False Data Injection Attacks Against Multi-Sensor Estimation Systems 被引量:4
1
作者 Haibin Guo Jian Sun Zhong-Hua Pang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1181-1191,共11页
This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the meas... This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis. 展开更多
关键词 Cyber-physical systems(CPSs) false data injection(fdi)attacks remote state estimation stealthy attacks
下载PDF
Passivity-Based Robust Control Against Quantified False Data Injection Attacks in Cyber-Physical Systems 被引量:3
2
作者 Yue Zhao Ze Chen +2 位作者 Chunjie Zhou Yu-Chu Tian Yuanqing Qin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1440-1450,共11页
Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false d... Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor. 展开更多
关键词 Cyber-physical systems energy controller energy conversion false data injection attacks L2 disturbance attenuation technology
下载PDF
Kinematic Control of Serial Manipulators Under False Data Injection Attack 被引量:2
3
作者 Yinyan Zhang Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1009-1019,共11页
With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ... With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations. 展开更多
关键词 Cyber-physical systems false data injection attack MANIPULATORS remote kinematic control
下载PDF
Coot Optimization with Deep Learning-Based False Data Injection Attack Recognition
4
作者 T.Satyanarayana Murthy P.Udayakumar +2 位作者 Fayadh Alenezi E.Laxmi Lydia Mohamad Khairi Ishak 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期255-271,共17页
The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation... The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%. 展开更多
关键词 false data injection attack security internet of things deep learning coot optimization algorithm
下载PDF
基于海马优化深层极限学习机的电力信息物理系统FDIA检测
5
作者 席磊 白芳岩 +3 位作者 王文卓 彭典名 陈洪军 李宗泽 《电力系统保护与控制》 北大核心 2025年第4期14-26,共13页
虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme lear... 虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme learning machine,DELM)的FDIA检测定位算法。首先,该算法将极限学习机和极限学习机自编码器相结合得到了具备强特征表达能力的DELM。然后,通过海马优化算法对DELM的偏置和输入权重进行择优,用于改善算法指标不稳定的问题。同时在捕食阶段引入精英余弦变异算法以提升海马的收敛速度与DELM的精度。最后,将系统量测数据作为输入特征,利用DELM得到节点状态标签,从而实现污染状态量的定位。通过在IEEE 14节点系统和IEEE 57节点系统进行大量仿真对比分析,验证了所提算法在准确率、精确率、召回率及F1值等检测定位性能方面均具有明显优势,能够实现FDIA的精确定位。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 海马优化算法 深层极限学习机
下载PDF
Hash-based FDI attack-resilient distributed self-triggered secondary frequency control for islanded microgrids
6
作者 Xing Huang Yulin Chen +4 位作者 Donglian Qi Yunfeng Yan Shaohua Yang Ying Weng Xianbo Wang 《Global Energy Interconnection》 2025年第1期1-12,共12页
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam... Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks. 展开更多
关键词 MICROGRIDS Distributed secondary control Self-triggered control Hash algorithms false data injection attack
下载PDF
基于反向鲸鱼-多隐层极限学习机的电网FDIA检测
7
作者 席磊 王艺晓 +2 位作者 何苗 程琛 田习龙 《中国电力》 CSCD 北大核心 2024年第9期20-31,共12页
针对目前已有的电力信息物理系统虚假数据注入攻击检测方法由于特征表达能力有限,而导致无法精确获取受攻击位置的问题,提出一种基于反向学习鲸鱼优化多隐层极限学习机的虚假数据注入攻击定位检测方法。所提方法不仅将极限学习机拓展为... 针对目前已有的电力信息物理系统虚假数据注入攻击检测方法由于特征表达能力有限,而导致无法精确获取受攻击位置的问题,提出一种基于反向学习鲸鱼优化多隐层极限学习机的虚假数据注入攻击定位检测方法。所提方法不仅将极限学习机拓展为多隐层神经网络,解决其特征表达能力有限的问题,而且引入鲸鱼优化算法对多隐层极限学习机的各隐层神经元个数进行寻优并采用反向学习策略提高其收敛速度和检测精度,以防止随机确定各隐层神经元个数对检测方法的泛化性能和定位检测结果造成影响。通过在不同场景下对IEEE-14和57节点测试系统进行大量实验,验证了所提方法能够通过历史数据自动识别受攻击的系统状态量所对应的精确位置。与其他多种方法相比,所提方法具有更优的精度、召回率和F1值。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 多隐层极限学习机 鲸鱼优化 反向学习
下载PDF
Adaptive security control of time-varying constraints nonlinear cyber-physical systems with false data injection attacks
8
作者 Yue-Ming Wang Yuan-Xin Li 《Journal of Control and Decision》 EI 2024年第1期50-59,共10页
In this article,an adaptive security control scheme is presented for cyber-physical systems(CPSs)suffering from false data injection(FDI)attacks and time-varying state constraints.Firstly,an adaptive bound estimation ... In this article,an adaptive security control scheme is presented for cyber-physical systems(CPSs)suffering from false data injection(FDI)attacks and time-varying state constraints.Firstly,an adaptive bound estimation mechanism is introduced in the backstepping control design to mitigate the effect of FDI attacks.Secondly,to solve the unknown sign time-varying statefeedback gains aroused by the FDI attacks,a type of Nussbaum function is employed in the adaptive security control.Then,by constructing a barrier Lyapunov function,it can be ensured that all signals of controlled system are bounded and the time-varying state constraints are not transgressed.Finally,the provided simulation examples demonstrate the effectiveness of the proposed controller. 展开更多
关键词 Neural networks backstepping technology false data injection(fdi)attacks nonlinear cyber-physical systems controls
原文传递
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids
9
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 false data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
下载PDF
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid
10
作者 Zhixun Zhang Jianqiang Hu +3 位作者 Jianquan Lu Jie Yu Jinde Cao Ardak Kashkynbayev 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期913-924,共12页
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi... In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink. 展开更多
关键词 MICROGRID load frequency control false data injection attack bi-directional long short-term memory(BiLSTM)neural network improved whale optimization algorithm(IWOA) detection and defense
原文传递
FDI攻击下移动机器人弹性预测镇定控制研究
11
作者 贺宁 范昭 马凯 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第7期722-730,共9页
提出一种具有自适应预测时域的输入重构弹性自触发模型预测控制(self-triggered model predictive control,ST-MPC)算法,平衡机器人系统网络安全和资源受限之间的矛盾.首先,基于自触发非周期采样特征和虚假数据注入(false data injectio... 提出一种具有自适应预测时域的输入重构弹性自触发模型预测控制(self-triggered model predictive control,ST-MPC)算法,平衡机器人系统网络安全和资源受限之间的矛盾.首先,基于自触发非周期采样特征和虚假数据注入(false data injection,FDI)攻击模型设计输入重构机制,确保机器人系统可快速重构,能削弱FDI攻击影响的可行控制序列.其次,结合输入重构机制设计关键数据选取条件和预测时域调节机制,从实现最大化触发间隔和降低优化问题复杂度两个方面降低资源消耗.然后,基于输入重构和预测时域调节机制设计弹性ST-MPC镇定控制算法,并推导FDI攻击下算法的可行性和闭环系统稳定性条件.最后,通过仿真实验验证所提出算法能够在抵御FDI攻击前提下保持较好的控制性能及资源利用率. 展开更多
关键词 移动机器人 弹性自触发模型预测镇定控制 虚假数据注入攻击 输入重构 自适应预测时域
下载PDF
针对信息物理系统远程状态估计的隐蔽虚假数据注入攻击
12
作者 金增旺 刘茵 +3 位作者 刁靖东 王震 孙长银 刘志强 《自动化学报》 北大核心 2025年第2期356-365,共10页
从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CP... 从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CPS远程状态估计的性能.首先,利用残差的统计特征计算远程状态估计误差协方差,将FDI最优策略问题转化为二次约束优化问题.其次,在攻击隐蔽性的约束下,运用拉格朗日乘子法及半正定规划推导出最优策略.最后,通过仿真实验验证所提方法与现有方法相比在隐蔽性方面具有显著优势. 展开更多
关键词 信息物理系统 虚假数据注入攻击 Kullback-Leibler散度 远程状态估计
下载PDF
基于自适应加权混合预测的电网虚假数据注入攻击检测
13
作者 束洪春 杨永银 +2 位作者 赵红芳 许畅 赵学专 《电网技术》 北大核心 2025年第3期1246-1256,I0095,共12页
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先... 电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。 展开更多
关键词 电力信息物理系统 加权灰色关联分析 无迹卡尔曼滤波 最小二乘支持向量机 虚假数据攻击 攻击检测指数
原文传递
基于改进卷积神经网络的电网虚假数据注入攻击定位方法
14
作者 席磊 程琛 田习龙 《南方电网技术》 北大核心 2025年第1期74-84,共11页
虚假数据注入攻击通过篡改数据采集与监视控制系统采集的数据,进而破坏电力系统的稳定运行。传统虚假数据注入攻击检测方法无法对受攻击位置进行定位,亦或定位精度低。首先提出一种改进海鸥优化卷积神经网络的虚假数据注入攻击检测方法... 虚假数据注入攻击通过篡改数据采集与监视控制系统采集的数据,进而破坏电力系统的稳定运行。传统虚假数据注入攻击检测方法无法对受攻击位置进行定位,亦或定位精度低。首先提出一种改进海鸥优化卷积神经网络的虚假数据注入攻击检测方法,所提方法利用具有共享权值和局部连接特性的卷积神经网络来对高维历史量测数据进行高效的特征提取及分类。然后引入具备平衡全局搜索和局部搜索能力的改进海鸥优化算法进行超参数寻优,以获得虚假数据检测的高度匹配网络结构,进而对不良数据进行检测和定位。最后通过对IEEE-14和IEEE-57节点系统进行大量攻击检测实验,验证了所提方法的有效性,并与其他多种检测方法对比,验证了所提方法的具有更优的分类性能、更高的准确率、精度、召回率和F1值。 展开更多
关键词 虚假数据注入攻击 电力系统 卷积神经网络 海鸥优化 数据检测
下载PDF
基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测
15
作者 席磊 王文卓 +3 位作者 白芳岩 陈洪军 彭典名 李宗泽 《电网技术》 北大核心 2025年第2期824-833,I0112-I0114,共13页
面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线... 面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线性地衡量数据特征之间的关联性,且公平地根据一个特征变量中包含另一个特征变量的信息量来去除冗余特征,有效解决虚假数据注入攻击定位检测方法普遍面临的量测数据高维冗余问题;同时提出一种具有正反馈信息传递作用的双层置信极端梯度提升树来对各节点状态进行分类,通过结合电网拓扑关系学习标签相关性,从而有选择性地利用前序标签有效预测信息,来减少后续分类器学习到的前序标签预测信息中包含的错误,最终实现对受攻击位置的精确定位。在IEEE-14、IEEE-57节点系统上进行大量仿真,算例结果验证了所提方法的有效性,且相较于其他方法具有更高的准确率、精度、召回率、F1值和AUC(area under curve)值。 展开更多
关键词 虚假数据注入攻击 最大信息系数 双层置信 极端梯度提升树 标签相关性
原文传递
基于图注意力与多尺度并行融合卷积的虚假数据注入攻击定位检测
16
作者 席磊 陈采玉 +1 位作者 陈洪军 李宗泽 《高电压技术》 北大核心 2025年第4期1763-1772,共10页
虚假数据注入攻击严重威胁电力信息物理系统的安全,而传统攻击检测方法由于没有考虑量测数据间的拓扑并且特征提取能力差,无法精确识别攻击并定位受攻击节点。因此,该文提出一种基于图注意力与多尺度并行融合卷积模型的虚假数据注入攻... 虚假数据注入攻击严重威胁电力信息物理系统的安全,而传统攻击检测方法由于没有考虑量测数据间的拓扑并且特征提取能力差,无法精确识别攻击并定位受攻击节点。因此,该文提出一种基于图注意力与多尺度并行融合卷积模型的虚假数据注入攻击定位检测方法。该方法通过图注意力网络动态捕捉量测数据间的拓扑关系以提升检测方法的定位检测性能;采用结合注意力特征融合模块增强的并行卷积神经网络提取数据的多尺度特征进一步提高检测方法的学习能力和泛化能力,以实现高精度的定位检测。通过在IEEE-14节点测试系统和IEEE-57节点测试系统中进行评估研究,与现有的定位检测方法相比,该文所提方法具有更优的F1值,分别高达98.40%、95.29%。因此,该方法能够更好地对虚假数据注入攻击进行定位检测。 展开更多
关键词 虚假数据注入攻击 电力信息物理系统 图注意力网络 并行卷积 特征融合
原文传递
基于博弈论的信息物理系统在FDI攻击下的控制 被引量:1
17
作者 王羽 李庆奎 《河南科学》 2020年第12期1901-1907,共7页
随着信息物理系统(Cyber-Physical System,CPS)的广泛应用,很多恶意攻击者都将注意力转移到了CPS上.针对存在虚假数据注入(False Data Injection,FDI)攻击的信息物理系统,从控制理论角度入手,以非合作博弈的二人零和博弈为基础设计H∞... 随着信息物理系统(Cyber-Physical System,CPS)的广泛应用,很多恶意攻击者都将注意力转移到了CPS上.针对存在虚假数据注入(False Data Injection,FDI)攻击的信息物理系统,从控制理论角度入手,以非合作博弈的二人零和博弈为基础设计H∞鲁棒控制方法,将控制器和攻击信号分别视为博弈双方参与者,通过寻找二人零和博弈的纳什均衡点从而保证最坏攻击情况下系统的稳定运行.在此基础上,提出了一种无模型Q-学习算法,在不需要系统动力学信息的情况下在线学习最优控制策略.最后进行了仿真实验,验证所提方法的有效性. 展开更多
关键词 信息物理系统 虚假数据注入攻击 零和博弈 Q学习
下载PDF
基于XGBoost算法的电力虚假数据注入攻击残差检测
18
作者 翟千惠 朱萌 +2 位作者 俞阳 何玮 康雨萌 《电子设计工程》 2025年第1期109-112,117,共5页
电力系统中的负载波动、电压失调等不确定性因素会影响电力虚假数据注入攻击残差检测的准确性,导致电力虚假数据注入攻击电力系统,产生电力系统误判或失控现象,为此设计基于XGBoost算法的电力虚假数据注入攻击残差检测方法。根据XGBoos... 电力系统中的负载波动、电压失调等不确定性因素会影响电力虚假数据注入攻击残差检测的准确性,导致电力虚假数据注入攻击电力系统,产生电力系统误判或失控现象,为此设计基于XGBoost算法的电力虚假数据注入攻击残差检测方法。根据XGBoost算法原理完成对电力虚假数据的辨识;构造完整的虚假数据集合,通过分析虚假数据注入攻击行为的方式,确定残差检测系数的取值范围,实现基于XGBoost算法的电力虚假数据注入攻击残差检测。实验结果表明,所提方法可以较为准确地检测出虚假数据的实时注入量,从而将检测结果与真实注入量之间的数值差控制在低水平状态,以便实现对电力虚假数据注入攻击行为的有效控制。 展开更多
关键词 XGBoost算法 电力虚假数据 注入攻击 残差检测 耗电量
下载PDF
基于神经网络的电网虚假数据注入攻击定位方法
19
作者 原静 孙骏 《计算机应用文摘》 2025年第3期64-66,共3页
常规的电网虚假数据注入攻击定位模型多为局域定位处理,定位覆盖范围受到限制,致使最终的误报率提高。为此,文章设计与分析了基于神经网络的电网虚假数据注入攻击定位方法。根据当前测定,首先进行虚假数据攻击定位节点部署,辨识虚假数... 常规的电网虚假数据注入攻击定位模型多为局域定位处理,定位覆盖范围受到限制,致使最终的误报率提高。为此,文章设计与分析了基于神经网络的电网虚假数据注入攻击定位方法。根据当前测定,首先进行虚假数据攻击定位节点部署,辨识虚假数据注入攻击脆弱等级,结合神经网络技术,打破定位覆盖范围限制,构建神经网络电网虚假数据注入攻击定位模型,并采用二次核验的方式实现精准攻击定位处理。 展开更多
关键词 神经网络 电网运行 虚假数据 注入攻击 攻击定位 定位方法
下载PDF
虚假数据注入攻击下的非线性网络物理系统状态估计
20
作者 魏源初 丁博 王东振 《扬州大学学报(自然科学版)》 2025年第1期73-78,共6页
针对传感器和执行器同时存在未知虚假数据注入攻击的非线性网络物理系统,研究其安全状态估计与攻击重构问题。针对系统中注入虚假数据时固有的不稳定性,提出一种递归三步扩展卡尔曼滤波算法,得到系统状态及攻击信号的无偏最小方差估计,... 针对传感器和执行器同时存在未知虚假数据注入攻击的非线性网络物理系统,研究其安全状态估计与攻击重构问题。针对系统中注入虚假数据时固有的不稳定性,提出一种递归三步扩展卡尔曼滤波算法,得到系统状态及攻击信号的无偏最小方差估计,并引入无限增广状态无迹卡尔曼滤波算法进一步提高估计精度。最后,通过仿真实验验证所提方法的有效性。 展开更多
关键词 非线性网络物理系统 虚假数据注入攻击 安全状态估计 非线性滤波
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部